Developing an Explainable Machine Learning-Based Thyroid Disease Prediction Model

2022 ◽  
Vol 9 (3) ◽  
pp. 0-0

Healthcare and medicine are key areas where machine learning algorithms are widely used. The medical decision support systems thus created are accurate enough, however, they suffer from the lack of transparency in decision making and shows a black box behavior. However, transparency and trust are significant in the field of health and medicine and hence, a black box system is sub optimal in terms of widespread applicability and reach. Hence, the explainablility of the research make the system reliable and understandable, thereby enhancing its social acceptability. The presented work explores a thyroid disease diagnosis system. SHAP, a popular method based on coalition game theory is used for interpretability of results. The work explains the system behavior both locally and globally and shows how machine leaning can be used to ascertain the causality of the disease and support doctors to suggest the most effective treatment of the disease. The work not only demonstrates the results of machine learning algorithms but also explains related feature importance and model insights.

2017 ◽  
Vol 05 (06) ◽  
pp. E477-E483 ◽  
Author(s):  
Anastasios Koulaouzidis ◽  
Dimitris Iakovidis ◽  
Diana Yung ◽  
Emanuele Rondonotti ◽  
Uri Kopylov ◽  
...  

Abstract Background and aims Capsule endoscopy (CE) has revolutionized small-bowel (SB) investigation. Computational methods can enhance diagnostic yield (DY); however, incorporating machine learning algorithms (MLAs) into CE reading is difficult as large amounts of image annotations are required for training. Current databases lack graphic annotations of pathologies and cannot be used. A novel database, KID, aims to provide a reference for research and development of medical decision support systems (MDSS) for CE. Methods Open-source software was used for the KID database. Clinicians contribute anonymized, annotated CE images and videos. Graphic annotations are supported by an open-access annotation tool (Ratsnake). We detail an experiment based on the KID database, examining differences in SB lesion measurement between human readers and a MLA. The Jaccard Index (JI) was used to evaluate similarity between annotations by the MLA and human readers. Results The MLA performed best in measuring lymphangiectasias with a JI of 81 ± 6 %. The other lesion types were: angioectasias (JI 64 ± 11 %), aphthae (JI 64 ± 8 %), chylous cysts (JI 70 ± 14 %), polypoid lesions (JI 75 ± 21 %), and ulcers (JI 56 ± 9 %). Conclusion MLA can perform as well as human readers in the measurement of SB angioectasias in white light (WL). Automated lesion measurement is therefore feasible. KID is currently the only open-source CE database developed specifically to aid development of MDSS. Our experiment demonstrates this potential.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 99 ◽  
Author(s):  
M Kiran Kumar ◽  
M Sreedevi ◽  
Y C. A. Padmanabha Reddy

Machine learning plays a vital role in health care industry. It is very important in Computer Aided Diagnosis. Computer Aided Diagnosis is a quickly developing dynamic region of research in medicinal industry. The current specialists in machine learning guarantee the enhanced precision of discernment and analysis of diseases. The computers are empowered to think by creating knowledge by learning. This procedure enables the computers to self-learn individually without being explicitly programed by the programmer .There are numerous sorts of Machine Learning Techniques and which are utilized to classify the data sets. They are Supervised, Unsupervised and Semi-Supervised, Reinforcement, deep learning algorithms. The principle point of this paper is to give comparative analysis of supervised learning algorithms in medicinal area and few of the techniques utilized as a part of liver disease prediction.


10.29007/lt5p ◽  
2019 ◽  
Author(s):  
Sophie Siebert ◽  
Frieder Stolzenburg

Commonsense reasoning is an everyday task that is intuitive for humans but hard to implement for computers. It requires large knowledge bases to get the required data from, although this data is still incomplete or even inconsistent. While machine learning algorithms perform rather well on these tasks, the reasoning process remains a black box. To close this gap, our system CoRg aims to build an explainable and well-performing system, which consists of both an explainable deductive derivation process and a machine learning part. We conduct our experiments on the Copa question-answering benchmark using the ontologies WordNet, Adimen-SUMO, and ConceptNet. The knowledge is fed into the theorem prover Hyper and in the end the conducted models will be analyzed using machine learning algorithms, to derive the most probable answer.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


Sign in / Sign up

Export Citation Format

Share Document