Developing a Project-Based CALL Environment with Technical Communication in an Exploratory 3D Printing Context

Author(s):  
Debopriyo Roy

Involving EFL students in 3D printing in a language classroom introduces the idea of project-based CALL, where different technology interfaces engage students in complex technical writing activities and social interactions in a fluid language-learning environment. This paper took an instructional approach to explaining how project-based CALL environment could be created with 3D printing based practices, combining technical communication with systems thinking, online research, 3D scanning, computer-aided design, sketch boarding and concept mapping, prototyping, and digital content management. Class performance in this collaborative, autonomous and social language-learning environment suggested that students were able to produce technical writing, prepare documentation, demonstrated critical thinking and brainstorming, and develop design and implementation strategies while handling 3D printing-enabled processes. Results and patterns of student engagement with technology indicated that project-based learning (PBL) approach in TC classroom is engaging, unique, realistic and feasible.

Author(s):  
Debopriyo Roy

Involving EFL students in 3D printing in a language classroom introduces the idea of project-based CALL, where different technology interfaces engage students in complex technical writing activities and social interactions in a fluid language-learning environment. This paper took an instructional approach to explaining how project-based CALL environment could be created with 3D printing based practices, combining technical communication with systems thinking, online research, 3D scanning, computer-aided design, sketch boarding and concept mapping, prototyping, and digital content management. Class performance in this collaborative, autonomous and social language-learning environment suggested that students were able to produce technical writing, prepare documentation, demonstrated critical thinking and brainstorming, and develop design and implementation strategies while handling 3D printing-enabled processes. Results and patterns of student engagement with technology indicated that project-based learning (PBL) approach in TC classroom is engaging, unique, realistic and feasible.


2021 ◽  
pp. 97-110
Author(s):  
V.V. Batrakov ◽  
A.I. Krylov ◽  
V.N. Saev ◽  
B.N. Nefyodov ◽  
V.M. Novichkov ◽  
...  

The paper presents space simulators (SS), types of instrumentation equipment installed on the workplaces of the space simulators operators (SSOPW), multi-functional display panel (MFDP), computer-aided design (CAD) tools, 3D printing technologies.


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


Author(s):  
Brooke Mansfield ◽  
Sabrina Torres ◽  
Tianyu Yu ◽  
Dazhong Wu

Abstract Additive manufacturing (AM), also known as 3D printing, has been used for rapid prototyping due to its ability to produce parts with complex geometries from computer-aided design files. Currently, polymers and metals are the most commonly used materials for AM. However, ceramic materials have unique mechanical properties such as strength, corrosion resistance, and temperature resistance. This paper provides a review of recent AM techniques for ceramics such as extrusion-based AM, the mechanical properties of additively manufactured ceramics, and the applications of ceramics in various industries, including aerospace, automotive, energy, electronics, and medical. A detailed overview of binder-jetting, laser-assisted processes, laminated object manufacturing (LOM), and material extrusion-based 3D printing is presented. Finally, the challenges and opportunities in AM of ceramics are identified.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chenxi Huang ◽  
Yisha Lan ◽  
Sirui Chen ◽  
Qing Liu ◽  
Xin Luo ◽  
...  

Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures.


Author(s):  
Giovanni Berselli ◽  
Pietro Bilancia ◽  
Luca Luzi

Abstract The use of integrated Computer Aided Design/Engineering (CAD/CAE) software capable of analyzing mechanical devices in a single parametric environment is becoming an industrial standard. Potential advantages over traditional enduring multi-software design routines can be outlined into time/cost reduction and easier modeling procedures. To meet industrial requirements, the engineering education is constantly revising the courses programs to include the training of modern advanced virtual prototyping technologies. Within this scenario, the present work describes the CAD/CAE project-based learning (PjBL) activity developed at the University of Genova as a part of course named Design of Automatic Machines, taught at the second level degree in mechanical engineering. The PjBL activity provides a detailed overview of an integrated design environment (i.e. PTC Creo). The students, divided into small work groups, interactively gain experience with the tool via the solution of an industrial design problem, provided by an engineer from industry. The considered case study consists of an automatic pushing device implemented in a commercial machine. Starting from a sub-optimal solution, the students, supervised by the lecturers, solve a series of sequential design steps involving both motion and structural analysis. The paper describes each design phase and summarizes the numerical outputs. At last, the results of the PjBL activity are presented and commented by considering the opinions of all the parties involved.


Sign in / Sign up

Export Citation Format

Share Document