Performance Analyses of Differential Evolution Algorithm Based on Dynamic Fitness Landscape

Author(s):  
Kangshun Li ◽  
Zhuozhi Liang ◽  
Shuling Yang ◽  
Zhangxing Chen ◽  
Hui Wang ◽  
...  

Dynamic fitness landscape analyses contain different metrics to attempt to analyze optimization problems. In this article, some of dynamic fitness landscape metrics are selected to discuss differential evolution (DE) algorithm properties and performance. Based on traditional differential evolution algorithm, benchmark functions and dynamic fitness landscape measures such as fitness distance correlation for calculating the distance to the nearest global optimum, ruggedness based on entropy, dynamic severity for estimating dynamic properties, a fitness cloud for getting a visual rendering of evolvability and a gradient for analyzing micro changes of benchmark functions in differential evolution algorithm, the authors obtain useful results and try to apply effective data, figures and graphs to analyze the performance differential evolution algorithm and make conclusions. Those metrics have great value and more details as DE performance.

2019 ◽  
Vol 10 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Ali Khater Mohamed ◽  
Ehab Z. Elfeky ◽  
Mohamed Saleh

The performance of Differential Evolution is significantly affected by the mutation scheme, which attracts many researchers to develop and enhance the mutation scheme in DE. In this article, the authors introduce an enhanced DE algorithm (EDDE) that utilizes the information given by good individuals and bad individuals in the population. The new mutation scheme maintains effectively the exploration/exploitation balance. Numerical experiments are conducted on 24 test problems presented in CEC'2006, and five constrained engineering problems from the literature for verifying and analyzing the performance of EDDE. The presented algorithm showed competitiveness in some cases and superiority in other cases in terms of robustness, efficiency and quality the of the results.


2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


Author(s):  
Haibo Yu ◽  
Li Kang ◽  
Ying Tan ◽  
Jianchao Zeng ◽  
Chaoli Sun

AbstractSurrogate models are commonly used to reduce the number of required expensive fitness evaluations in optimizing computationally expensive problems. Although many competitive surrogate-assisted evolutionary algorithms have been proposed, it remains a challenging issue to develop an effective model management strategy to address problems with different landscape features under a limited computational budget. This paper adopts a coarse-to-fine evaluation scheme basing on two surrogate models, i.e., a coarse Gaussian process and a fine radial basis function, for assisting a differential evolution algorithm to solve computationally expensive optimization problems. The coarse Gaussian process model is meant to capture the general contour of the fitness landscape to estimate the fitness and its degree of uncertainty. A surrogate-assisted environmental selection strategy is then developed according to the non-dominance relationship between approximated fitness and estimated uncertainty. Meanwhile, the fine radial basis function model aims to learn the details of the local fitness landscape to refine the approximation quality of the new parent population and find the local optima for real-evaluations. The performance and scalability of the proposed method are extensively evaluated on two sets of widely used benchmark problems. Experimental results show that the proposed method can outperform several state-of-the-art algorithms within a limited computational budget.


2014 ◽  
Vol 602-605 ◽  
pp. 3585-3588
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

To efficiently enhance the global search and local search of Differential Evolution algorithm ( DE), A modified differential evolution algorithm (MDE) is proposed in this paper. The MDE and the DE are different in two aspects. The first is the MDE Algorithm use a strategy of Pitch adjustment instead of original mutation operation, this can enhance the convergence of the MDE, the second is integrate the opposed-learning operation in the crossover operation to prevent DE from being trapped into local optimum. Four test functions are adopted to make comparison with original DE, the MDE has demonstrated stronger velocity of convergence and precision of optimization than differential DE algorithm and PSO.


2014 ◽  
Vol 989-994 ◽  
pp. 2536-2539
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a modified differential evolution algorithm (MDE) developed to solve unconstrained numerical optimization problems. The MDE algorithm employed random position updating and disturbance operation to replaces the traditional mutation operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the MDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


2013 ◽  
Vol 415 ◽  
pp. 309-313
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a new opposition-based modified differential evolution algorithm (OMDE) is proposed. This algorithm integrates the opposed-learning operation with the crossover operation to enhance the convergence of the algorithm and to prevent the algorithm from being trapped into the local optimum effectively. Besides, we employed a new strategy to dynamic adjust mutation rate (MR) and crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark functions tested, the OMDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850028
Author(s):  
Zhen Zhu ◽  
Long Chen ◽  
Changgao Xia ◽  
Chaochun Yuan

This paper presents a novel differential evolution algorithm to solve dynamic optimization problems. In the proposed algorithm, the entire population is composed of several subpopulations, which are evolved independently and excluded each other by a predefined Euclidian-distance. In each subpopulation, the “DE/best/1” mutation operator is employed to generate a mutant individual in this paper. In order to fully exploit the newly generated individual, the selection operator was extended, in which the newly generated trial vector competed with the worst individual if this trial vector was worse than the target vector in terms of the fitness. Meanwhile, this trial vector was stored as the historical information, if it was better than the worst individual. When the environmental change was detected, some of the stored solutions were retrieved and expected to guide the reinitialized solutions to track the new location of the global optimum as soon as possible. The proposed algorithm was compared with several state-of-the-art dynamic evolutionary algorithms over the representative benchmark instances. The experimental results show that the proposed algorithm outperforms the competitors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongbo Hu ◽  
Shengwu Xiong ◽  
Zhixiang Fang ◽  
Qinghua Su

Many improved differential Evolution (DE) algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS) operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.


Sign in / Sign up

Export Citation Format

Share Document