A Hybrid Approach for Facial Expression Recognition Using Extended Local Binary Patterns and Principal Component Analysis

Author(s):  
Gopal Krishan Prajapat ◽  
Rakesh Kumar

Facial feature extraction and recognition plays a prominent role in human non-verbal interaction and it is one of the crucial factors among pose, speech, facial expression, behaviour and actions which are used in conveying information about the intentions and emotions of a human being. In this article an extended local binary pattern is used for the feature extraction process and a principal component analysis (PCA) is used for dimensionality reduction. The projections of the sample and model images are calculated and compared by Euclidean distance method. The combination of extended local binary pattern and PCA (ELBP+PCA) improves the accuracy of the recognition rate and also diminishes the evaluation complexity. The evaluation of proposed facial expression recognition approach will focus on the performance of the recognition rate. A series of tests are performed for the validation of algorithms and to compare the accuracy of the methods on the JAFFE, Extended Cohn-Kanade images database.

Author(s):  
Gopal Krishan Prajapat ◽  
Rakesh Kumar

Facial feature extraction and recognition plays a prominent role in human non-verbal interaction and it is one of the crucial factors among pose, speech, facial expression, behaviour and actions which are used in conveying information about the intentions and emotions of a human being. In this article an extended local binary pattern is used for the feature extraction process and a principal component analysis (PCA) is used for dimensionality reduction. The projections of the sample and model images are calculated and compared by Euclidean distance method. The combination of extended local binary pattern and PCA (ELBP+PCA) improves the accuracy of the recognition rate and also diminishes the evaluation complexity. The evaluation of proposed facial expression recognition approach will focus on the performance of the recognition rate. A series of tests are performed for the validation of algorithms and to compare the accuracy of the methods on the JAFFE, Extended Cohn-Kanade images database.


JOUTICA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 484
Author(s):  
Resty Wulanningrum ◽  
Anggi Nur Fadzila ◽  
Danar Putra Pamungkas

Manusia secara alami menggunakan ekspresi wajah untuk berkomunikasi dan menunjukan emosi mereka dalam berinteraksi sosial. Ekspresi wajah termasuk kedalam komunikasi non-verbal yang dapat menyampaikan keadaan emosi seseorang kepada orang yang telah mengamatinya. Penelitian ini menggunakan metode Principal Component Analysis (PCA) untuk proses ekstraksi ciri pada citra ekspresi dan metode Convolutional Neural Network (CNN) sebagai prosesi klasifikasi emosi, dengan menggunakan data Facial Expression Recognition-2013 (FER-2013) dilakukan proses training dan testing untuk menghasilkan nilai akurasi dan pengenalan emosi wajah. Hasil pengujian akhir mendapatkan nilai akurasi pada metode PCA sebesar 59,375% dan nilai akurasi pada pengujian metode CNN sebesar 59,386%.


2011 ◽  
Vol 13 (3) ◽  
pp. 9-13 ◽  
Author(s):  
Luiz Oliveira ◽  
Marcelo Mansano ◽  
Alessandro Koerich ◽  
Alceu de Souza Britto

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ebenezer Owusu ◽  
Jacqueline Asor Kumi ◽  
Justice Kwame Appati

Facial expression is an important form of nonverbal communication, as it is noted that 55% of what humans communicate is expressed in facial expressions. There are several applications of facial expressions in diverse fields including medicine, security, gaming, and even business enterprises. Thus, currently, automatic facial expression recognition is a hotbed research area that attracts lots of grants and therefore the need to understand the trends very well. This study, as a result, aims to review selected published works in the domain of study and conduct valuable analysis to determine the most common and useful algorithms employed in the study. We selected published works from 2010 to 2021 and extracted, analyzed, and summarized the findings based on the most used techniques in feature extraction, feature selection, validation, databases, and classification. The result of the study indicates strongly that local binary pattern (LBP), principal component analysis (PCA), saturated vector machine (SVM), CK+, and 10-fold cross-validation are the most widely used feature extraction, feature selection, classifier, database, and validation method used, respectively. Therefore, in line with our findings, this study provides recommendations for research specifically for new researchers with little or no background as to which methods they can employ and strive to improve.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiangmin Chen ◽  
Li Ke ◽  
Qiang Du ◽  
Jinghui Li ◽  
Xiaodi Ding

Facial expression recognition (FER) plays a significant part in artificial intelligence and computer vision. However, most of facial expression recognition methods have not obtained satisfactory results based on low-level features. The existed methods used in facial expression recognition encountered the major issues of linear inseparability, large computational burden, and data redundancy. To obtain satisfactory results, we propose an innovative deep learning (DL) model using the kernel entropy component analysis network (KECANet) and directed acyclic graph support vector machine (DAGSVM). We use the KECANet in the feature extraction stage. In the stage of output, binary hashing and blockwise histograms are adopted. We sent the final output features to the DAGSVM classifier for expression recognition. We test the performance of our proposed method on three databases of CK+, JAFFE, and CMU Multi-PIE. According to the experiment results, the proposed method can learn high-level features and provide more recognition information in the stage of training, obtaining a higher recognition rate.


2014 ◽  
Vol 631-632 ◽  
pp. 498-501 ◽  
Author(s):  
De Kun Hu ◽  
An Sheng Ye ◽  
Li Li ◽  
Li Zhang

In this work, a kernel principle component analysis network (KPCANet) is proposed for classification of the facial expression in unconstrained images, which comprises only the very basic data processing components: cascaded kernel principal component analysis (KPCA), binary hashing, and block-wise histograms. In the proposed model, KPCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. For comparison and better understanding, We have tested these basic networks extensively on many benchmark visual datasets ( such as the JAFFE [13] database, the CMU AMP face expression database, a part of the Extended Cohn-Kanade (CK+) database), The results demonstrate the potential of the KPCANet serving as a simple but highly competitive baseline for facial expression recognition.


Sign in / Sign up

Export Citation Format

Share Document