Performance Optimization of Tridiagonal Matrix Algorithm [TDMA] on Multicore Architectures

Author(s):  
Anishchandran Chathalingath ◽  
Arun Manoharan

Fast and efficient tridiagonal solvers are highly appreciated in scientific and engineering domain, but challenging optimization task for computer engineers. The state-of-the-art developments in multi-core computing paves the way to meet this challenge to an extent. The technical advances in multi-core computing provide opportunities to exploit lower levels of parallelism and concurrency for inherently sequential algorithms. In this article, the authors present an optimal performance pipelined parallel variant of the conventional Tridiagonal Matrix Algorithm (TDMA), aka the Thomas algorithm, on a multi-core CPU platform. The implementation, analysis and performance comparison of the proposed pipelined parallel TDMA and the conventional version are performed on an Intel SIMD multi-core architecture. The results are compared in terms of elapsed time, speedup, cache miss rate. For a system of ‘n' linear equations where n = 2^36 in presented pipelined parallel TDMA achieves speedup of 1.294X with a parallel efficiency of 43% initially and inclines towards linear speed up as the system grows.

2019 ◽  
Author(s):  
Henrique Freitas ◽  
Celso Luiz Mendes

The Roofline model gives insights about the performance behavior of applications bounded by either memory or processor limits, providing useful guidelines for performance improvements. This work uses the Roofline model on the analysis of the MGB model that simulates hydrological processes in largescale watersheds. Real-world input data are used to characterize the performance on two multicore architectures, one with only CPUs and one with CPUs/GPU. The MGB model performance is improved with optimizations for better memory use, and also with shared-memory (OpenMP) and GPU (OpenACC) parallelism. CPU performance achieves 42.51 % and 50.17 % of each system’s peak, whereas GPU performance is low due to overheads caused by the MGB model structure.


2014 ◽  
Vol 3 (2) ◽  
pp. 22-26
Author(s):  
V. S. Prabhu ◽  
◽  
V. P. Surya Surendran ◽  
V. G. Veena ◽  
◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
MOIN SIDDIQUI KHADIM ◽  
FATMA AMREEN ◽  
KHURSHEED SIDDIQUI MOHD ◽  
◽  
◽  
...  

2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Sign in / Sign up

Export Citation Format

Share Document