A Neurofuzzy Knowledge Based Architecture for Robotic Hand Manipulation Forces Learning

Author(s):  
Ebrahim Mattar

Optimal distribution of forces for manipulation by a robot hand, is a hard computational issue, specifically once a whole hand grasp is needed. It becomes a complicated issue, once a robotic hand is equipped with human like deformable sensory touching materials. For computing optimal set of manipulation forces, grip transform and inverse hand Jacobian play major roles for such purposes. This manuscript is discussing a Neurofuzzy learning technique for learning optimal force distribution by a dextrous hand. For learning purposes, optimal set of forces patterns were gathered in advanced using optimization formulation technique. After that, to let a Neurofuzzy system to learn the nonlinear kinematics-dynamics relations needed for force distribution. This is done by considering the computational requirements for the inverse hand Jacobian, in addition to the interaction between hand fingers and the object. Training patterns clustering, and generation of the fuzzy initial memberships, and updated shape of memberships, are considered as vital information to build upon for more reasoning of fuzzy interrelation. The technique is novel in a sense, that the adopted Neurofuzzy architecture was transparent in terms of revealing the learned hand optimal forces if then rules.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 5393-5406 ◽  
Author(s):  
Guanyu Wang ◽  
Liang Ding ◽  
Haibo Gao ◽  
Zongquan Deng ◽  
Zhen Liu ◽  
...  

Robotica ◽  
1993 ◽  
Vol 11 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Yong Dal Shin ◽  
Myung Jin Chung

SUMMARYIn this paper, we suggest an optimal force distribution scheme by weak point force minimization and we also present an efficient method to solve the problem. The concept of a weak point is a generalized one which is applicable to any points of interest, as well as joints or contact points between end-effectors and an object. The problem is formulated by a quadratic objective function of the forces exerted at weak points subject to the linear equality and inequality constraints, and its optimal solution is obtained by an efficient method. As regards the solution of the problem, the original problem is reformulated to a reduced order dual problem after the equality constraints are eliminated by force decomposition.


Sign in / Sign up

Export Citation Format

Share Document