SWFQA Semantic Web Based Framework for Question Answering

2019 ◽  
Vol 9 (1) ◽  
pp. 88-106
Author(s):  
Irphan Ali ◽  
Divakar Yadav ◽  
Ashok Kumar Sharma

A question answering system aims to provide the correct and quick answer to users' query from a knowledge base. Due to the growth of digital information on the web, information retrieval system is the need of the day. Most recent question answering systems consult knowledge bases to answer a question, after parsing and transforming natural language queries to knowledge base-executable forms. In this article, the authors propose a semantic web-based approach for question answering system that uses natural language processing for analysis and understanding the user query. It employs a “Total Answer Relevance Score” to find the relevance of each answer returned by the system. The results obtained thereof are quite promising. The real-time performance of the system has been evaluated on the answers, extracted from the knowledge base.

2017 ◽  
Vol 11 (03) ◽  
pp. 345-371
Author(s):  
Avani Chandurkar ◽  
Ajay Bansal

With the inception of the World Wide Web, the amount of data present on the Internet is tremendous. This makes the task of navigating through this enormous amount of data quite difficult for the user. As users struggle to navigate through this wealth of information, the need for the development of an automated system that can extract the required information becomes urgent. This paper presents a Question Answering system to ease the process of information retrieval. Question Answering systems have been around for quite some time and are a sub-field of information retrieval and natural language processing. The task of any Question Answering system is to seek an answer to a free form factual question. The difficulty of pinpointing and verifying the precise answer makes question answering more challenging than simple information retrieval done by search engines. The research objective of this paper is to develop a novel approach to Question Answering based on a composition of conventional approaches of Information Retrieval (IR) and Natural Language processing (NLP). The focus is on using a structured and annotated knowledge base instead of an unstructured one. The knowledge base used here is DBpedia and the final system is evaluated on the Text REtrieval Conference (TREC) 2004 questions dataset.


2017 ◽  
Vol 58 (2) ◽  
pp. 1
Author(s):  
Waheeb Ahmed ◽  
Babu Anto

An automatic web based Question Answering (QA) system is a valuable tool for improving e-learning and education. Several approaches employ natural language processing technology to understand questions given in natural language text, which is incomplete and error-prone. In addition, instead of extracting exact answer, many approaches simply return hyperlinks to documents containing the answers, which is inconvenient for the students or learners. In this paper we develop technique to detect the type of a question, based on which the proper technique for extracting the answer is used. The system returns only blocks or phrases of data containing the answer rather than full documents. Therefore, we can highly improve the efficiency of Web QA systems for e-learning.


2020 ◽  
Vol 29 (06) ◽  
pp. 2050019
Author(s):  
Hadi Veisi ◽  
Hamed Fakour Shandi

A question answering system is a type of information retrieval that takes a question from a user in natural language as the input and returns the best answer to it as the output. In this paper, a medical question answering system in the Persian language is designed and implemented. During this research, a dataset of diseases and drugs is collected and structured. The proposed system includes three main modules: question processing, document retrieval, and answer extraction. For the question processing module, a sequential architecture is designed which retrieves the main concept of a question by using different components. In these components, rule-based methods, natural language processing, and dictionary-based techniques are used. In the document retrieval module, the documents are indexed and searched using the Lucene library. The retrieved documents are ranked using similarity detection algorithms and the highest-ranked document is selected to be used by the answer extraction module. This module is responsible for extracting the most relevant section of the text in the retrieved document. During this research, different customized language processing tools such as part of speech tagger and lemmatizer are also developed for Persian. Evaluation results show that this system performs well for answering different questions about diseases and drugs. The accuracy of the system for 500 sample questions is 83.6%.


Author(s):  
Dora Melo ◽  
Irene Pimenta Rodrigues ◽  
Vitor Beires Nogueira

Question Answering systems that resort to the Semantic Web as a knowledge base can go well beyond the usual matching words in documents and, preferably, find a precise answer, without requiring user help to interpret the documents returned. In this paper, the authors introduce a Dialogue Manager that, through the analysis of the question and the type of expected answer, provides accurate answers to the questions posed in Natural Language. The Dialogue Manager not only represents the semantics of the questions, but also represents the structure of the discourse, including the user intentions and the questions context, adding the ability to deal with multiple answers and providing justified answers. The authors' system performance is evaluated by comparing with similar question answering systems. Although the test suite is slight dimension, the results obtained are very promising.


2020 ◽  
Vol 12 (3) ◽  
pp. 45
Author(s):  
Wenqing Wu ◽  
Zhenfang Zhu ◽  
Qiang Lu ◽  
Dianyuan Zhang ◽  
Qiangqiang Guo

Knowledge base question answering (KBQA) aims to analyze the semantics of natural language questions and return accurate answers from the knowledge base (KB). More and more studies have applied knowledge bases to question answering systems, and when using a KB to answer a natural language question, there are some words that imply the tense (e.g., original and previous) and play a limiting role in questions. However, most existing methods for KBQA cannot model a question with implicit temporal constraints. In this work, we propose a model based on a bidirectional attentive memory network, which obtains the temporal information in the question through attention mechanisms and external knowledge. Specifically, we encode the external knowledge as vectors, and use additive attention between the question and external knowledge to obtain the temporal information, then further enhance the question vector to increase the accuracy. On the WebQuestions benchmark, our method not only performs better with the overall data, but also has excellent performance regarding questions with implicit temporal constraints, which are separate from the overall data. As we use attention mechanisms, our method also offers better interpretability.


2021 ◽  
Author(s):  
Nathan Ji ◽  
Yu Sun

The digital age gives us access to a multitude of both information and mediums in which we can interpret information. A majority of the time, many people find interpreting such information difficult as the medium may not be as user friendly as possible. This project has examined the inquiry of how one can identify specific information in a given text based on a question. This inquiry is intended to streamline one's ability to determine the relevance of a given text relative to his objective. The project has an overall 80% success rate given 10 articles with three questions asked per article. This success rate indicates that this project is likely applicable to those who are asking for content level questions within an article.


2020 ◽  
pp. 259-269
Author(s):  
H.I. Hoherchak ◽  

The article describes some ways of knowledge bases application to natural language texts analysis and solving some of their processing tasks. The basic problems of natural language processing are considered, which are the basis for their semantic analysis: problems of tokenization, parts of speech tagging, dependency parsing, correference resolution. The basic concepts of knowledge bases theory are presented and the approach to their filling based on Universal Dependencies framework and the correference resolution problem is proposed. Examples of applications for knowledge bases filled with natural language texts in practical problems are given, including checking constructed syntactic and semantic models for consistency and question answering.


Sign in / Sign up

Export Citation Format

Share Document