Interoperable Semantic and Syntactic Service Discovery for Ambient Computing Environments
The inherent heterogeneity of ambient computing environments and their constant evolution requires middleware platforms to manage networked components designed, developed, and deployed independently. Such management must also be efficient to cater for resource-constrained devices and highly dynamic situations due to the spontaneous appearance and disappearance of networked resources. For service discovery protocols (SDP), one of the main functions of service-oriented architectures (SOA), the efficiency of the matching of syntactic service descriptions is most often opposed to the fullness of the semantic approach. As part of the PLASTIC middleware, the authors present an interoperable discovery platform that features an efficient matching and ranking algorithm able to process service descriptions and discovery requests from both semantic and syntactic SDPs. To that end, the paper defines a generic, modular description language able to record service functional properties, potentially extended with semantic annotations. The proposed discovery platform leverages the advanced communication capabilities provided by the PLASTIC middleware to discover services in multi-network environments. An evaluation of the prototype implementation demonstrates that multi-protocols service matching supporting various levels of expressiveness can be achieved in ambient computing environments.