On Construction of a Diskless Cluster Computing Environment in a Computer Classroom

2012 ◽  
Vol 4 (4) ◽  
pp. 68-88
Author(s):  
Chao-Tung Yang ◽  
Wen-Feng Hsieh

This paper’s objective is to implement and evaluate a high-performance computing environment by clustering idle PCs (personal computers) with diskless slave nodes on campuses to obtain the effectiveness of the largest computer potency. Two sets of Cluster platforms, BCCD and DRBL, are used to compare computing performance. It’s to prove that DRBL has better performance than BCCD in this experiment. Originally, DRBL was created to facilitate instructions for a Free Software Teaching platform. In order to achieve the purpose, DRBL is applied to the computer classroom with 32 PCs so to enable PCs to be switched manually or automatically among different OS (operating systems). The bioinformatics program, mpiBLAST, is executed smoothly in the Cluster architecture as well. From management’s view, the state of each Computation Node in Clusters is monitored by “Ganglia”, an existing Open Source. The authors gather the relevant information of CPU, Memory, and Network Load for each Computation Node in every network section. Through comparing aspects of performance, including performance of Swap and different network environment, they attempted to find out the best Cluster environment in a computer classroom at the school. Finally, HPL of HPCC is used to demonstrate cluster performance.

Computation ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 20 ◽  
Author(s):  
Enrico Calore ◽  
Alessandro Gabbana ◽  
Sebastiano Fabio Schifano ◽  
Raffaele Tripiccione

In the last years, the energy efficiency of HPC systems is increasingly becoming of paramount importance for environmental, technical, and economical reasons. Several projects have investigated the use of different processors and accelerators in the quest of building systems able to achieve high energy efficiency levels for data centers and HPC installations. In this context, Arm CPU architecture has received a lot of attention given its wide use in low-power and energy-limited applications, but server grade processors have appeared on the market just recently. In this study, we targeted the Marvell ThunderX2, one of the latest Arm-based processors developed to fit the requirements of high performance computing applications. Our interest is mainly focused on the assessment in the context of large HPC installations, and thus we evaluated both computing performance and energy efficiency, using the ERT benchmark and two HPC production ready applications. We finally compared the results with other processors commonly used in large parallel systems and highlight the characteristics of applications which could benefit from the ThunderX2 architecture, in terms of both computing performance and energy efficiency. Pursuing this aim, we also describe how ERT has been modified and optimized for ThunderX2, and how to monitor power drain while running applications on this processor.


2008 ◽  
Vol 123 (5) ◽  
pp. 3373-3373
Author(s):  
Valery Polyakov ◽  
Henri‐Pierre Valero ◽  
Dzevat Omeragic ◽  
Raymond L. Kocian ◽  
Tarek M. Habashy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document