The Open Run-Time Environment (OpenRTE): A Transparent Multi-cluster Environment for High-Performance Computing

Author(s):  
R. H. Castain ◽  
T. S. Woodall ◽  
D. J. Daniel ◽  
J. M. Squyres ◽  
B. Barrett ◽  
...  
Author(s):  
Dazhong Wu ◽  
Xi Liu ◽  
Steve Hebert ◽  
Wolfgang Gentzsch ◽  
Janis Terpenny

Cloud computing is an innovative computing paradigm that can potentially bridge the gap between increasing computing demands in computer aided engineering (CAE) applications and limited scalability, flexibility, and agility in traditional computing paradigms. In light of the benefits of cloud computing, high performance computing (HPC) in the cloud has the potential to enable users to not only accelerate computationally expensive CAE simulations (e.g., finite element analysis), but also to reduce costs by utilizing on-demand and scalable cloud computing resources. The objective of this research is to evaluate the performance of running a large finite element simulation in a public cloud. Specifically, an experiment is performed to identify individual and interactive effects of several factors (e.g., CPU core count, memory size, solver computational rate, and input/output rate) on run time using statistical methods. Our experimental results have shown that the performance of HPC in the cloud is sufficient for the application of a large finite element analysis, and that run time can be optimized by properly selecting a configuration of CPU, memory, and interconnect.


2008 ◽  
Vol 24 (2) ◽  
pp. 153-157 ◽  
Author(s):  
R.H. Castain ◽  
T.S. Woodall ◽  
D.J. Daniel ◽  
J.M. Squyres ◽  
B. Barrett ◽  
...  

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Sign in / Sign up

Export Citation Format

Share Document