Research of Fatigue Life Simulations Applied to Large Complex Structure

Author(s):  
Bing Rong Miao ◽  
Shou Ne Xiao ◽  
Ding Chang Jin ◽  
Guan Wu Yang
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Arthur Hebecker ◽  
Sascha Leonhardt

Abstract We discuss the problem of metastable SUSY breaking in the landscape. While this is clearly crucial for the various de Sitter proposals, it is also interesting to consider the SUSY breaking challenge in the AdS context. For example, it could be that a stronger form of the non-SUSY AdS conjecture holds: it would forbid even metastable non-SUSY AdS in cases where the SUSY-breaking scale is parametrically above/below the AdS scale. At the technical level, the present paper proposes to break SUSY using the multi-cosine-shaped axion potentials which arise if a long winding trajectory of a ‘complex-structure axion’ appears in the large-complex-structure limit of a Calabi-Yau orientifold. This has been studied in the context of ‘Winding Inflation’, but the potential for SUSY breaking has not been fully explored. We discuss the application to uplifting LVS vacua, point out the challenges which one faces in the KKLT context, and consider the possibility of violating the non-SUSY AdS conjecture in the type-IIA setting of DGKT.


2009 ◽  
Vol 813 (3) ◽  
pp. 315-348
Author(s):  
Lalla Btissam Drissi ◽  
Houda Jehjouh ◽  
El Hassan Saidi

2007 ◽  
Vol 215 (2) ◽  
pp. 504-539 ◽  
Author(s):  
Adrian Clingher ◽  
Charles F. Doran

2000 ◽  
Vol 55 (3) ◽  
pp. 475-546 ◽  
Author(s):  
Mark Gross ◽  
P. M. H. Wilson

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jose J. Blanco-Pillado ◽  
Kepa Sousa ◽  
Mikel A. Urkiola ◽  
Jeremy M. Wachter

Abstract The large number of moduli fields arising in a generic string theory compactification makes a complete computation of the low energy effective theory infeasible. A common strategy to solve this problem is to consider Calabi-Yau manifolds with discrete symmetries, which effectively reduce the number of moduli and make the computation of the truncated Effective Field Theory possible. In this approach, however, the couplings (e.g., the masses) of the truncated fields are left undetermined. In the present paper we discuss the tree-level mass spectrum of type-IIB flux compactifications at Large Complex Structure, focusing on models with a reduced one-dimensional complex structure sector. We compute the tree-level spectrum for the dilaton and complex structure moduli, including the truncated fields, which can be expressed entirely in terms of the known couplings of the reduced theory. We show that the masses of this set of fields are naturally heavy at vacua consistent with the KKLT construction, and we discuss other phenomenologically interesting scenarios where the spectrum involves fields much lighter than the gravitino. We also derive the probability distribution for the masses on the ensemble of flux vacua, and show that it exhibits universal features independent of the details of the compactification. We check our results on a large sample of flux vacua constructed in an orientifold of the Calabi-Yau $$ {\mathbbm{W}\mathrm{\mathbb{P}}}_{\left[1,1,1,1,4\right]}^4 $$ W ℙ 1 1 1 1 4 4 . Finally, we also discuss the conditions under which the spectrum derived here could arise in more general compactifications.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Fernando Marchesano ◽  
David Prieto ◽  
Max Wiesner

Abstract We compute the flux-induced F-term potential in 4d F-theory compactifications at large complex structure. In this regime, each complex structure field splits as an axionic field plus its saxionic partner, and the classical F-term potential takes the form V = ZABρAρB up to exponentially-suppressed terms, with ρ depending on the fluxes and axions and Z on the saxions. We provide explicit, general expressions for Z and ρ, and from there analyse the set of flux vacua for an arbitrary number of fields. We identify two families of vacua with all complex structure fields fixed and a flux contribution to the tad- pole Nflux which is bounded. In the first and most generic one, the saxion vevs are bounded from above by a power of Nflux. In the second their vevs may be unbounded and Nflux is a product of two arbitrary integers, unlike what is claimed by the Tadpole Conjecture. We specialise to type IIB orientifolds, where both families of vacua are present, and link our analysis with previous results in the literature. We illustrate our findings with several examples.


Sign in / Sign up

Export Citation Format

Share Document