scholarly journals Winding uplifts and the challenges of weak and strong SUSY breaking in AdS

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Arthur Hebecker ◽  
Sascha Leonhardt

Abstract We discuss the problem of metastable SUSY breaking in the landscape. While this is clearly crucial for the various de Sitter proposals, it is also interesting to consider the SUSY breaking challenge in the AdS context. For example, it could be that a stronger form of the non-SUSY AdS conjecture holds: it would forbid even metastable non-SUSY AdS in cases where the SUSY-breaking scale is parametrically above/below the AdS scale. At the technical level, the present paper proposes to break SUSY using the multi-cosine-shaped axion potentials which arise if a long winding trajectory of a ‘complex-structure axion’ appears in the large-complex-structure limit of a Calabi-Yau orientifold. This has been studied in the context of ‘Winding Inflation’, but the potential for SUSY breaking has not been fully explored. We discuss the application to uplifting LVS vacua, point out the challenges which one faces in the KKLT context, and consider the possibility of violating the non-SUSY AdS conjecture in the type-IIA setting of DGKT.

2009 ◽  
Vol 813 (3) ◽  
pp. 315-348
Author(s):  
Lalla Btissam Drissi ◽  
Houda Jehjouh ◽  
El Hassan Saidi

2007 ◽  
Vol 215 (2) ◽  
pp. 504-539 ◽  
Author(s):  
Adrian Clingher ◽  
Charles F. Doran

2000 ◽  
Vol 55 (3) ◽  
pp. 475-546 ◽  
Author(s):  
Mark Gross ◽  
P. M. H. Wilson

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jose J. Blanco-Pillado ◽  
Kepa Sousa ◽  
Mikel A. Urkiola ◽  
Jeremy M. Wachter

Abstract The large number of moduli fields arising in a generic string theory compactification makes a complete computation of the low energy effective theory infeasible. A common strategy to solve this problem is to consider Calabi-Yau manifolds with discrete symmetries, which effectively reduce the number of moduli and make the computation of the truncated Effective Field Theory possible. In this approach, however, the couplings (e.g., the masses) of the truncated fields are left undetermined. In the present paper we discuss the tree-level mass spectrum of type-IIB flux compactifications at Large Complex Structure, focusing on models with a reduced one-dimensional complex structure sector. We compute the tree-level spectrum for the dilaton and complex structure moduli, including the truncated fields, which can be expressed entirely in terms of the known couplings of the reduced theory. We show that the masses of this set of fields are naturally heavy at vacua consistent with the KKLT construction, and we discuss other phenomenologically interesting scenarios where the spectrum involves fields much lighter than the gravitino. We also derive the probability distribution for the masses on the ensemble of flux vacua, and show that it exhibits universal features independent of the details of the compactification. We check our results on a large sample of flux vacua constructed in an orientifold of the Calabi-Yau $$ {\mathbbm{W}\mathrm{\mathbb{P}}}_{\left[1,1,1,1,4\right]}^4 $$ W ℙ 1 1 1 1 4 4 . Finally, we also discuss the conditions under which the spectrum derived here could arise in more general compactifications.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Igor Broeckel ◽  
Michele Cicoli ◽  
Anshuman Maharana ◽  
Kajal Singh ◽  
Kuver Sinha

Abstract The statistics of the supersymmetry breaking scale in the string landscape has been extensively studied in the past finding either a power-law behaviour induced by uniform distributions of F-terms or a logarithmic distribution motivated by dynamical supersymmetry breaking. These studies focused mainly on type IIB flux compactifications but did not systematically incorporate the Kähler moduli. In this paper we point out that the inclusion of the Kähler moduli is crucial to understand the distribution of the supersymmetry breaking scale in the landscape since in general one obtains unstable vacua when the F-terms of the dilaton and the complex structure moduli are larger than the F- terms of the Kähler moduli. After taking Kähler moduli stabilisation into account, we find that the distribution of the gravitino mass and the soft terms is power-law only in KKLT and perturbatively stabilised vacua which therefore favour high scale supersymmetry. On the other hand, LVS vacua feature a logarithmic distribution of soft terms and thus a preference for lower scales of supersymmetry breaking. Whether the landscape of type IIB flux vacua predicts a logarithmic or power-law distribution of the supersymmetry breaking scale thus depends on the relative preponderance of LVS and KKLT vacua.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Iosif Bena ◽  
Johan Blåbäck ◽  
Mariana Graña ◽  
Severin Lüst

Abstract We examine the mechanism of moduli stabilization by fluxes in the limit of a large number of moduli. We conjecture that one cannot stabilize all complex-structure moduli in F-theory at a generic point in moduli space (away from singularities) by fluxes that satisfy the bound imposed by the tadpole cancellation condition. More precisely, while the tadpole bound in the limit of a large number of complex-structure moduli goes like 1/4 of the number of moduli, we conjecture that the amount of charge induced by fluxes stabilizing all moduli grows faster than this, and is therefore larger than the allowed amount. Our conjecture is supported by two examples: K3 × K3 compactifications, where by using evolutionary algorithms we find that moduli stabilization needs fluxes whose induced charge is 44% of the number of moduli, and Type IIB compactifications on $$ \mathbbm{CP} $$ CP 3, where the induced charge of the fluxes needed to stabilize the D7-brane moduli is also 44% of the number of these moduli. Proving our conjecture would rule out de Sitter vacua obtained via antibrane uplift in long warped throats with a hierarchically small supersymmetry breaking scale, which require a large tadpole.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Fernando Marchesano ◽  
David Prieto ◽  
Max Wiesner

Abstract We compute the flux-induced F-term potential in 4d F-theory compactifications at large complex structure. In this regime, each complex structure field splits as an axionic field plus its saxionic partner, and the classical F-term potential takes the form V = ZABρAρB up to exponentially-suppressed terms, with ρ depending on the fluxes and axions and Z on the saxions. We provide explicit, general expressions for Z and ρ, and from there analyse the set of flux vacua for an arbitrary number of fields. We identify two families of vacua with all complex structure fields fixed and a flux contribution to the tad- pole Nflux which is bounded. In the first and most generic one, the saxion vevs are bounded from above by a power of Nflux. In the second their vevs may be unbounded and Nflux is a product of two arbitrary integers, unlike what is claimed by the Tadpole Conjecture. We specialise to type IIB orientifolds, where both families of vacua are present, and link our analysis with previous results in the literature. We illustrate our findings with several examples.


Sign in / Sign up

Export Citation Format

Share Document