A Large Measuring Range Profilometer for Three-Dimensional Surface Topography Measurement

Author(s):  
Xu Dong Yang ◽  
Jia Chun Li ◽  
Tie Bang Xie
Wear ◽  
2007 ◽  
Vol 262 (3-4) ◽  
pp. 395-410 ◽  
Author(s):  
N. Senin ◽  
M. Ziliotti ◽  
R. Groppetti

2007 ◽  
Vol 364-366 ◽  
pp. 750-755 ◽  
Author(s):  
Xu Dong Yang ◽  
Jia Chun Li ◽  
Tie Bang Xie

A novel profilometer for three-dimensional (3D) surface topography measurement is presented. The profilometer has large measuring range, high precision and small measuring touch force. It is composed of a two-dimensional (2D) displacement sensor, a 3D platform based on vertical scanning, measuring and control circuits and an industrial control computer. When a workpiece is measured, the vertical undulation of the profile at a sampling point leads to a zero offset of the 2D displacement sensor. According to the zero offset, a piezoelectric actuator and a servo motor drive the vertical scanning platform to move vertically to ensure that the lever returns to its balance position. So the non-linear error caused by the rotation of the lever is very small even if the measuring range is large. When the stylus barges up against a steep wall, the horizontal resistance force results in another zero offset of the 2D displacement sensor. If the zero offset exceeds a quota, the vertical scanning platform descends to make the stylus climb the steep wall successfully. According to the theoretical and experimental analysis, the profilometer can measure roughness, profile of sphere, step, groove and other 3D surfaces with curvature precisely.


Author(s):  
Junwei Liu ◽  
Kai Cheng ◽  
Hui Ding ◽  
Shijin Chen

Surface topography is an important characteristic of the surface integrity, and influences the performance and mechanical properties of the workpiece to a great extent in micro milling SiCp/Al composites. It is evaluated by three-dimensional surface roughness ( Sq) and fractal dimension ( Ds) in this paper. Based on the single factor experiment and the orthogonal experiment, the influence of process parameters (feed per tooth, spindle speed, milling depth, and milling width) on surface topography is studied. The results show that Sq is mainly affected by milling width and milling depth and optimal results for minimum Sq are: ae = 1.5 mm, ap = 0.08 mm, n = 12000 r/min, and fz=1 μm/z. While Ds is mainly affected by milling width and optimal parameters for maximum Ds are: ae=1 mm, n = 14000 r/min, fz = 1.5 μm/z and ap = 0.12 mm. There is a weak negative correlation between Sq and Ds. In addition, Ds is more sensitive to the main defects and in general a large Ds corresponds to a good surface.


Author(s):  
L. M. Galantucci ◽  
F. Lavecchia ◽  
G. Percoco

Considerable research effort has been focused on evaluating the accuracy of meso- and macroscale digital close range photogrammetry. However, evaluations of accuracy and applications in the submillimeter scale are rare. In this paper the authors propose the development of a three-dimensional (3D) photogrammetric scanner, based on macrolens cameras, able to reconstruct the three-dimensional surface topography of objects with submillimeter features. The system exploits multifocal image composition and has been designed for installation on all types of Numerical Controlled or Robotic systems. The approach is exploitable for digitizing submillimeter features at mesoscale as well as macroscale objects.


Sign in / Sign up

Export Citation Format

Share Document