Increase of Electrolysis Cell Performance by Addition of PVDF and Graphite Powder on MEA for Regenerative Fuel Cells

Author(s):  
Hong Ki Lee ◽  
Sung Wan Hong ◽  
Sung Won Yang ◽  
Woo Min Lee ◽  
Jeong Mo Yoon
2007 ◽  
Vol 26-28 ◽  
pp. 849-852
Author(s):  
Hong Ki Lee ◽  
Sung Wan Hong ◽  
Sung Won Yang ◽  
Woo Min Lee ◽  
Jeong Mo Yoon

For the regenerative fuel cell (RFC), water electrolysis cell performance using membrane electrode assembly (MEA) in polymer electrolyte fuel cell (PEMFC) were investigated. A part of Nafion had been secondary sprayed on the surface of catalytic layer and variation of cell performance was diminished. The conformation of stability, improvement of mechanical and electrical properties was accomplished by addition of PVDF, graphite and RuO2. With the addition of graphite power and RuO2, the voltage was decreased from 3.6V to 2.5V and 2.2V. The improvement of the mechanical properties was obtained by addition of PVDF. The electrolysis cell manufactured with MEA electrode was showed less decomposition voltage of 1.3V than with Nafion electrode at 10A of applied current. The stability of MEA was confirmed from 30 days of cell operation


2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2014 ◽  
Vol 4 (5) ◽  
pp. 1400-1406 ◽  
Author(s):  
Yuta Nabae ◽  
Mayu Sonoda ◽  
Chiharu Yamauchi ◽  
Yo Hosaka ◽  
Ayano Isoda ◽  
...  

A Pt-free cathode catalyst for polymer electrolyte membrane fuel cells has been developed by multi-step pyrolysis of Fe phthalocyanine and phenolic resin and shows a quite promising fuel cell performance.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


2006 ◽  
Vol 4 (3) ◽  
pp. 365-368 ◽  
Author(s):  
Guo-Bin Jung ◽  
Ay Su ◽  
Cheng-Hsin Tu ◽  
Fang-Bor Weng ◽  
Shih-Hung Chan

The flow-field design of direct methanol fuel cells (DMFCs) is an important subject about DMFC performance. Flow fields play an important role in the ability to transport fuel and drive out the products (H2O,CO2). In general, most fuel cells utilize the same structure of flow field for both anode and cathode. The popular flow fields used for DMFCs are parallel and grid designs. Nevertheless, the characteristics of reactants and products are entirely different in anode and cathode of DMFCs. Therefore, the influences of flow fields design on cell performance were investigated based on the same logic with respect to the catalyst used for cathode and anode nonsymmetrically. To get a better and more stable performance of DMFCs, three flow fields (parallel, grid, and serpentine) utilized with different combinations were studied in this research. As a consequence, by using parallel flow field in the anode side and serpentine flow-field in the cathode, the highest power output was obtained.


Sign in / Sign up

Export Citation Format

Share Document