Effect of Strain Rate Variation on Fatigue Life of Spot Welded Joint

Author(s):  
Joon Hyuk Song ◽  
Hyu Sun Yu ◽  
Hee Yong Kang ◽  
Sung Mo Yang
2005 ◽  
Vol 297-300 ◽  
pp. 2447-2452
Author(s):  
Joon Hyuk Song ◽  
Hyu Sun Yu ◽  
Hee Yong Kang ◽  
Sung Mo Yang

Resistance spot welding is used extensively to fasten sheet for automotive applications. In many components, these welds should maintain their integrity under severe loading conditions. However fatigue strength of the spot welded joint is considerably lower than base metal due to stress concentration at the nugget edge, and is influenced by its geometrical and mechanical factors such as welding condition and etc. In this paper, it is estimated that effect of strain rate variation on fatigue life of spot welded joint. The analytical method proposed to overcome above difficult using lethargy coefficient concept for evaluating the fatigue life cycle of spot welded joint. The reliability of the life cycle is completed by comparing with the life cycle obtained by fatigue test for the specimen with the welding current. And the above procedure is numerically extended to get the life of dynamic strain rate region.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


2015 ◽  
Vol 2015 (0) ◽  
pp. _G0301104--_G0301104-
Author(s):  
Masaki WASHIO ◽  
Chihiro TAKATUSUKA ◽  
Noboru TOMIOKA ◽  
Akifumi OKABE

2003 ◽  
Author(s):  
Kazuhiro Seto ◽  
Eisuke Nakayama ◽  
Koichi Tsunoda ◽  
Nobuhiro Fujita ◽  
Yuichi Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document