The Optimal Cutting-Parameter Design of Heavy Cutting in Side Milling for SUS304 Stainless Steel

Author(s):  
Ching Kao Chang ◽  
H.S. Lu
2006 ◽  
Vol 505-507 ◽  
pp. 811-816
Author(s):  
Ching Kao Chang ◽  
H.S. Lu

This paper presents an optimal cutting-parameter design of heavy cutting in side milling for SUS304 stainless steel. The orthogonal array with relational analysis is applied to optimize the side milling process with multiple performance characteristics. A grey relational grade obtained from the grey relational analysis is used as a performance index to determine the optimal cutting parameters. The selected cutting parameters are cutting speed, feed per tooth, axial depth of cut, and radial depth of cut, while the considered performance characteristics are tool life and metal removal rate. Experimental results have shown that cutting performance in the side milling process for heavy cutting can be significantly improved through this approach.


2012 ◽  
Vol 53 (6) ◽  
pp. 1069-1074 ◽  
Author(s):  
Mitsuharu Shiwa ◽  
Hiroyuki Masuda ◽  
Hisashi Yamawaki ◽  
Kaita Ito ◽  
Manabu Enoki

2016 ◽  
Vol 113 ◽  
pp. 989-994 ◽  
Author(s):  
Tao Yu ◽  
Dewei Deng ◽  
Gang Wang ◽  
Hongchao Zhang

1996 ◽  
Vol 46 (10) ◽  
pp. 500-504 ◽  
Author(s):  
Hiizu OCHI ◽  
Koichi OGAWA ◽  
Yoshiaki YAMAMOTO ◽  
Shigeki HASHINAGA ◽  
Yasuo SUGA ◽  
...  

2021 ◽  
Vol 1018 ◽  
pp. 105-110
Author(s):  
Jiang Nan Liu ◽  
Yan Hua Zou

In this study, mainly researching the improvement of roundness of thick SUS304 stainless steel tube by interior magnetic abrasive finishing using a magnetic machining jig. The influence of reciprocating velocity of magnetic pole unit on the improvement of roundness of interior surface was studied by establishing the dynamic equation of magnetic machining jig. Experimental results showed that low reciprocating velocity of magnetic pole unit is conducive to the improvement of interior roundness of the thick SUS304 stainless steel tube. The reason is that the low reciprocating velocity of magnetic pole unit reduces the pitch of the helical motion and can produce greater finishing force of the magnetic machining jig.


Sign in / Sign up

Export Citation Format

Share Document