cutting parameter
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Xingzheng Chen ◽  
Congbo Li ◽  
Ying Tang ◽  
Li Li ◽  
Hongcheng Li

AbstractMechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.


2021 ◽  
Author(s):  
Yang Li ◽  
Xiang Cheng ◽  
Siying Ling ◽  
Guangming Zheng ◽  
Lei He

Abstract In order to further improve the dimensional accuracy of micromilled thin walls with high aspect ratios, the machining process should be actively controlled. An active cutting force measurement and cutting parameter compensation device is developed to realize the real-time measurement of radial cutting forces and compensation of radial cutting parameters in thin wall cutting process. Firstly, based on the cantilever beam deformation theory, a mathematical model is established to calculate the deformation and cutting force of thin walls. By measuring the cutting force, the thin wall deformation in the cutting process could be estimated. Then, the obtained incremental thin wall deformation is to be compared with the compensation threshold, which is set at 0.5 μm. If the value of the incremental deformation is less than 0.5 μm, compensation will not be processed. Otherwise, the incremental deformation is used as the compensation value for iterative compensation, until the incremental deformation of the thin wall is less than 0.5 μm. At last, a contrast experiment is carried out. The experimental results show that the introduced device and method are feasible. Machining quality of the thin wall has been obviously improved in dimension precision after the cutting parameter compensations.


2021 ◽  
Vol 1092 (1) ◽  
pp. 012060
Author(s):  
J B Saedon ◽  
M F Othman ◽  
M S Meon ◽  
N. H. Mohamad Nor ◽  
H. Husain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document