Characterization and Preparation of Paraffin/Modified Inorganic Porous Materials Composites as Building Energy Storage Materials

2012 ◽  
Vol 450-451 ◽  
pp. 1419-1424 ◽  
Author(s):  
Liang Zhao ◽  
Rui Ying Ma ◽  
Xiang Lan Meng ◽  
Gang Wang ◽  
Xiang Chen Fang
2012 ◽  
Vol 450-451 ◽  
pp. 1419-1424 ◽  
Author(s):  
Liang Zhao ◽  
Rui Ying Ma ◽  
Xiang Lan Meng ◽  
Gang Wang ◽  
Xiang Chen Fang

Paraffin and modified inorganic porous materials composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of inorganic materials. In composite materials, paraffin was used as phase change material (PCM) for thermal energy storage, and γ-Al2O3 acted as supporting material, ethanol was solvent. A series of characterization were conducted to analyse and test the performance of the composite materials, and differential scanning calorimeter (DSC) results showed that the PCM-3 composite has the melting latent heat of 115.9 kJ/kg with melting temperature of 63.0°C. Due to the capillary and surface tension forces between paraffin and γ-Al2O3, the leakage of melted paraffin from the composites can be prevented. Several kinds of paraffin mixtures were also studied by adsorbing into the supporting materials, so that the composite energy storage materials with different phase change temperature can be used in the building wall to storage thermal of different regions. In a word, the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.


2016 ◽  
Vol 12 (4) ◽  
pp. 5-10
Author(s):  
L.F. Kozin ◽  
◽  
S.V. Volkov ◽  
A.V. Sviatogor ◽  
B.I. Daniltsev ◽  
...  

2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


2021 ◽  
Author(s):  
Yi He ◽  
Lei Xie ◽  
Shixiang Ding ◽  
Yujia Long ◽  
Xinyi Zhou ◽  
...  

Although the zinc oxide (ZnO) with wide distribution is one of the most attractive energy storage materials, the low electronic conductivity and insufficient active sites of bulk ZnO increase the...


Author(s):  
Mohan Kumar Anand Raj ◽  
Rajasekar Rathanasamy ◽  
Prabhakaran Paramasivam ◽  
Santhosh Sivaraj

Sign in / Sign up

Export Citation Format

Share Document