Forced Vibration Behavior of Adhesively Bonded Single-Lap Joint

2011 ◽  
Vol 110-116 ◽  
pp. 3611-3616 ◽  
Author(s):  
Xiao Cong He

This paper deals with forced vibration behavior of adhesively bonded single-lap joint theoretically and experimentally. The finite element analysis (FEA) software was used to predict the natural frequencies and frequency response functions (FRFs) of the joint. The dynamic test software and the data acquisition hardware were used in experimental measurement of the dynamic response of the joint. It is shown that the natural frequencies of the joint from experiment are lower than those predicted using finite element analysis. It is also found that the measued FRFs are close to the predicted FRFs for the first two modes of vibration of the joint. Above the second mode of vibration, there is considerable discrepancy between the measured and predicted FRFs.

2019 ◽  
Vol 54 (5-6) ◽  
pp. 293-309 ◽  
Author(s):  
Ranjan K Behera ◽  
SK Parida ◽  
RR Das

The present research aims to study the growth of the circular adhesion failure pre-existing at the interfaces of the strap adherend and the adhesive in a single lap joint. Three-dimensional nonlinear finite element analysis of adhesively bonded single lap joints made with high strength steel adherends under uniformly applied extension have been carried out. The interfacial stresses and strain energy release rate values, being indicative parameters, in the growth of the adhesion failures are computed in the vicinity of the pre-existing circular adhesion failure fronts when the load on single lap joint increases till failure. The magnitudes of the strain energy release rate are computed using the virtual crack closure technique. The results show that the sizes of the adhesion failure significantly influence the magnitudes of the interfacial stresses, the three modes of strain energy release rates and the load-bearing capacity of the single lap joint. The finite element analysis predicts that pre-embedded circular adhesion failures will not have grown from the pre-embedded circular adhesion failure front, instead the failure will be initiated from the overlap ends upon loading for the adhesive bonded single lap joint made with strong adherends and AV119 adhesive. The finite element analysis also proposes a method to calculate the strength of this type of joint configurations using the global shear strength of the adhesive and the intact bonded area. The finite element analysis predicted failure strength of the single lap joint is in good agreement with the experimentally obtained strength for the single lap joint containing pre-existing circular adhesion failure.


1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


Author(s):  
Yuqiao Zheng ◽  
Fugang Dong ◽  
Huquan Guo ◽  
Bingxi Lu ◽  
Zhengwen He

The study obtains a methodology for the bionic design of the tower for wind turbines. To verify the rationality of the biological selection, the Analytic Hierarchy Procedure (AHP) is applied to calculate the similarity between the bamboo and the tower. Creatively, a bionic bamboo tower (BBT) is presented, which is equipped with four reinforcement ribs and five flanges. Further, finite element analysis is employed to comparatively investigate the performance of the BBT and the original tower (OT) in the static and dynamic. Through the investigation, it is suggested that the maximum deformation and maximum stress can be reduced by 5.93 and 13.75% of the BBT. Moreover, this approach results in 3% and 1.1% increase respectively in the First two natural frequencies and overall stability.


2011 ◽  
Vol 314-316 ◽  
pp. 1792-1795
Author(s):  
Hu Huang ◽  
Hong Wei Zhao ◽  
Jie Yang ◽  
Shun Guang Wan ◽  
Jie Mi ◽  
...  

In this paper, a miniaturization nanoindentation and scratch device was developed. Finite element analysis was carried out to study static and modal characteristics of x/y flexure hinge and z axis driving hinge as well as effect of geometric parameters on output performances of z axis driving hinge. Results indicated that x/y flexure hinge and z axis driving hinge had enough strength and high natural frequencies. Geometric parameters of z axis driving hinge affected output performances significantly. The model of developed device was established. Indentation experiments of Si and amorphous alloy showed that the developed miniaturization nanoindentation and scratch device worked well and can carry out indentation experiments with certain accuracy.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


Sign in / Sign up

Export Citation Format

Share Document