Investigation of Shielding Effectiveness Caused by Incident Plane Wave on Conductive Enclosure in UHF Band

2011 ◽  
Vol 110-116 ◽  
pp. 940-948
Author(s):  
Asghar Keshtkar ◽  
Amir Maghoul ◽  
Ali Kalantarnia ◽  
Negar Elmiye Sadr

Electromagnetic compatibility is achieved by reducing the interference below the level that disrupts the proper operation of the electronic system or subsystem. This compatibility is generally accomplished by means of electronic filters, and component or equipment shielding. Shielding an electromagnetic field is a complex and sometimes formidable task. The reasons are many, since the effectiveness of any strategy or technique aimed at the reduction of the electromagnetic field levels in a prescribed region depends largely upon the source (s) characteristics, the shield topology, and materials. In this paper, the effect of an incident plane wave with linear polarization on aluminum shield in UHF frequency is investigated, then, the type of shield material is changed and shielding effectiveness caused by it is investigated. Also, the linear polarization of incident wave is converted to circular polarization and shielding effectiveness variation is obtained in this stage. Slots and apertures are very important parameters to determine suitable shielding effectiveness. In following paper, slot is placed on shield, and its shielding effectiveness is evaluated. The effects of slot width variation, slot length variation and slot displacement, on shielding effectiveness are investigated. Finally, the effect of different aperture structure is evaluated and shielding factor is obtained in any stage. The whole of simulations in this paper, are done with CADFEKO.

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Qaisar Hayat ◽  
Junping Geng ◽  
Xianling Liang ◽  
Ronghong Jin ◽  
Sami Ur Rehman ◽  
...  

The enhancement of optical characteristics at optical frequencies deviates with the choice of the arrangement of core-shell nanoparticles and their environment. Likewise, the arrangements of core-shell nanoparticles in the air over a substrate or in liquid solution makes them unstable in the atmosphere. This article suggests designing a configuration of an active spherical coated nanoparticle antenna and its extended array in the presence of a passive dielectric, which is proposed to be extendable to construct larger arrays. The issue of instability in the core-shell nanoantenna array models is solved here by inserting the passive dielectric. In addition to this, the inclusion of a dielectric in the array model reports a different directivity behaviour than the conventional array models. We found at first that the combination model of the active coated nanoparticle and passive sphere at the resonant frequency can excite a stronger field with a rotated polarization direction and a propagation direction different from the incident plane-wave. Furthermore, the extended 2D array also rotates the polarization direction and propagation direction for the vertical incident plane-wave. The radiation beam operates strong multipoles in the 2D array plane at resonant frequency (behaving non-conventionally). Nevertheless, it forms a clear main beam in the incident direction when it deviates from the resonance frequency (behaving conventionally). The proposed array model may have possible applications in nano-amplifiers, nano-sensors and other integrated optics.


2018 ◽  
Vol 74 (6) ◽  
pp. 673-680 ◽  
Author(s):  
V. G. Kohn

The article reports an accurate theory of X-ray coplanar multiple diffraction for an experimental setup that consists of a generic synchrotron radiation (SR) source, double-crystal monochromator (M) and slit (S). It is called for brevity the theory of X-ray coplanar multiple SRMS diffractometry. The theory takes into account the properties of synchrotron radiation as well as the features of diffraction of radiation in the monochromator crystals and the slit. It is shown that the angular and energy dependence (AED) of the sample reflectivity registered by a detector has the form of a convolution of the AED in the case of the monochromatic plane wave with the instrumental function which describes the angular and energy spectrum of radiation incident on the sample crystal. It is shown that such a scheme allows one to measure the rocking curves close to the case of the monochromatic incident plane wave, but only using the high-order reflections by monochromator crystals. The case of four-beam (220)(331)({\overline {11}}1) diffraction in Si is considered in detail.


Radio Science ◽  
1978 ◽  
Vol 13 (1) ◽  
pp. 107-119 ◽  
Author(s):  
R. W. P. King ◽  
D. J. Blejer ◽  
S.-K. Wan ◽  
R. W. Burton

Sign in / Sign up

Export Citation Format

Share Document