Channel Mill’s Top Shell Prototyping with the Single Point Incremental Forming Technology of Sheet Metal

2011 ◽  
Vol 120 ◽  
pp. 94-101
Author(s):  
Gang Liu

First of all, the theory and application of the Single Point Incremental Forming (SPIF) technology of sheet metal are introduced at the beginning of this paper; second, several traditional forming technologies of channel mill’s top shell are compared; third, The advantages of SPIF Technology of Sheet Metal in channel mill’s top shell prototyping are analyzed; finally, the steps and methods of channel mill’s top shell design and prototyping with SPIF technology are elaborated through a real business case.

2011 ◽  
Vol 338 ◽  
pp. 46-55 ◽  
Author(s):  
Gang Liu

First of all, the theory, advantages and application of the Single Point Incremental Forming (SPIF) technology of sheet metal are introduced at the beginning of this paper; second, the traditional forming technologies of bus’s face and back in Chinese bus industry are compared; third, The advantages of the SPIF Technology of Sheet Metal in Bus Prototyping are analyzed; finally, the steps and methods of bus’s face design and prototyping with SPIF technology are elaborated through a real business case.


2007 ◽  
Vol 344 ◽  
pp. 931-938 ◽  
Author(s):  
Aleš Petek ◽  
Gašper Gantar ◽  
Tomaz Pepelnjak ◽  
Karl Kuzman

In contemporary industrial production the ecological aspects have increasingly important role in selection of sheet metal forming process. To produce sheet metal parts with minimal environmental burdening the shortening of forming processes including the procedures for production of appurtenant forming tools as well as decrease use of lubricant is prerequisite. The ecological aspects have to be considered also already in developmental phase where the forming technology is evaluated in digital environment with FEM simulations. In addition, particularly in small and medium batch production the geometrically complex parts are difficult to form economically with conventional forming processes like deep drawing or stretching. Therefore, new concepts like hydro-mechanical forming or incremental sheet metal forming were developed. In order to select the optimal forming process the production costs as well as the environmental aspects like lubrication, noise, pollution and energy per produced part have to be considered. The paper is focused towards the comparison of conventional deep drawing (DD) process aimed for forming the pyramid-shaped part with single point incremental forming technology (SPIF). The economical and ecological aspects affecting the successful forming by both concepts are determined. Comparative evaluation was established in order to present advantages and drawbacks of each analysed technology.


CIRP Annals ◽  
2005 ◽  
Vol 54 (2) ◽  
pp. 88-114 ◽  
Author(s):  
J. Jeswiet ◽  
F. Micari ◽  
G. Hirt ◽  
A. Bramley ◽  
J. Duflou ◽  
...  

2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


2014 ◽  
Vol 17 (1) ◽  
pp. 21-28
Author(s):  
Dien Khanh Le ◽  
Nam Thanh Nguyen ◽  
Binh Thien Nguyen

Single Point Incremental Forming (SPIF) has become popular for metal sheet forming technology in industry in many advanced countries. In the recent decade, there were lots of related studies that have concentrated on this new technology by Finite Element Method as well as by empirical practice. There have had very rare studies by pure analytical theory and almost all these researches were based on the formula of ISEKI. However, we consider that this formula does not reflect yet the mechanics of destruction of the sheet work piece as well as the behavior of the sheet in reality. The main aim of this paper is to examine ISEKI’s formula and to suggest a new analytical computation of three elements of stresses at any random point on the sheet work piece. The suggested formula is carefully verified by the results of Finite Element Method simulation.


2019 ◽  
Vol 825 ◽  
pp. 129-139
Author(s):  
Le Khanh Dien ◽  
Le Khanh Tan ◽  
Van Thanh Nguyen ◽  
Huy Bich Nguyen ◽  
Thanh Nam Nguyen

Nowadays, Single Point Incremental Forming (SPIF) has become popular for metal sheet forming technology in industry in many advanced countries. In the recent decade, many relative studies have concentrated on this new technology of forming sheet by Finite Element Method (FEM) as well as by empirical way. There were very rare studies by pure analytical computing and P.A.F. Martins et al. under a title “Theory of single point incremental forming” performed almost all these researches were based on the analytical framework of SPIF in 2008. After careful studying on this research, we found out its light illogical result: the stresses inside of a random point in the workpiece sheet are constant and not related to the coordinate of the formed point of the sheet. Therefore, it cannot explain the mechanism of rupture and tear of the sheet that is really a serious restriction of the SPIF technology nowadays. This paper dedicates to suggest a new version of pure analytical computing the normal stresses at a random formed point in the sheet that could explain the tear mechanism and a FEM simulation was also carried out also to prove the conviction of the recommended formula.


Sign in / Sign up

Export Citation Format

Share Document