finite element method simulation
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 49)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Linlin Zhou ◽  
Laipan Zhu ◽  
Tao Yang ◽  
Xinmei Hou ◽  
Zhengtao Du ◽  
...  

AbstractUltra-stable piezoelectric nanogenerator (PENG) driven by environmental actuation sources with all-weather service capability is highly desirable. Here, the PENG based on N doped 4H-SiC nanohole arrays (NHAs) is proposed to harvest ambient energy under low/high temperature and relative humidity (RH) conditions. Finite element method simulation of N doped 4H-SiC NHAs in compression mode is developed to evaluate the relationship between nanohole diameter and piezoelectric performance. The density of short circuit current of the assembled PENG reaches 313 nA cm−2, which is 1.57 times the output of PENG based on N doped 4H-SiC nanowire arrays. The enhancement can be attributed to the existence of nanohole sidewalls in NHAs. All-weather service capability of the PENG is verified after being treated at -80/80 ℃ and 0%/100% RH for 50 days. The PENG is promising to be widely used in practice worldwide to harvest biomechanical energy and mechanical energy.


2021 ◽  
Vol 11 (23) ◽  
pp. 11501
Author(s):  
Shun Zhong ◽  
Suxia Zhang ◽  
Jie Yang ◽  
Yanan Zhang

Overhung rotors are widely used in the industrial field. However, compared with normal structure rotors, the prediction and control of overhung rotors cannot achieve good performance. The work aims to investigate the dynamical behaviours of an overhung rotor by means of correlation analysis, and find its possible application. In this work, based on a real type of rotor, the dynamic model of the rotor with overhang is established by means of the finite element method. Simulation of the dynamic model with different input positions and support stiffnesses is conducted. Based on the methodology of correlation analysis, by introducing a correlation parameter of a proportion of amplitude of measured signal and imbalance mass, the position which has most effect on the vibration is found. Meanwhile, an experiment on the same type of overhung rotor is carried out to validate the results. The numerical results and corresponding experimental results prove that the overhung node has the most effect on the vibration amplitudes of the measured points. Choosing the overhung node to add trial weight, the overhung rotor can be easily balanced. The theory provides an alternative approach to modal analysis which needs more knowledge of the system.


Author(s):  
JR Nijin ◽  
T Jagadesh

Fabrication of an axisymmetric biomedical implant with good dimensions, form and surface integrity features are a challenging task in the micro-manufacturing industry. This is due to workpiece deflection, vibrations, tool wear and adhesion of the chip on the cutting inset during the micromachining process. So experimental evaluation on the variation of tool geometry is expensive and difficult as stated in prior literature. So, in this work, a finite-element method simulation is developed to comprehend the physics of the process and predict the energy consumption by incorporating the effect of material strengthening caused by shearing of material across the grain, shear band pattern upon strain rate and tool geometry such as edge radius, nose radius and rake angle. The modified Johnson-Cook material model is used to state the flow stress and an adaptive remeshing technique is utilized to model the plastic deformation at a higher strain rate during the simulation process. Initially, the model is developed in a transient state and then modified to a steady-state to obtain the output process parameters. The proposed model is calibrated and validated with experimental results reported in the literature. It is inferred that the cutting force, thrust force and feed force acquired from finite-element method simulation have been confirmed experimentally with prediction accuracy of 94%, 82.66% and 87.02%, respectively. It is also inferred that energy consumption during machining reduces with an increase in rake angle because of the sharpness of the cutting edge and less friction between tool and chip. An increase of nose radius and edge radius produces high thrust force and energy consumption and impedes high radial depth of cut. For the same machining parameters with the increase of edge radius and decrease of rake angle the mechanism of material removal changes from shearing to ploughing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Eduard Bertran ◽  
Paula Tercero ◽  
Alex Sànchez-Cerdà

Purpose This paper aims to overcome the main obstacle to compare the merits of the different control strategies for fixed-wing unmanned aerial vehicles (UAVs) to assess autopilot performances. Up to now, the published studies of control strategies have been carried out over disperse models, thus being complicated, if not impossible, to compare the merits of each proposal. The authors present a worked benchmark for autopilots studies, consisting of generalized models obtained by merging UAVs’ parameters gathered from selected literature (journals) with other parameters directly obtained by the authors to include some relevant UAVs whose models are not provided in the literature. To obtain them it has been used a dedicated software (from U.S. Air Force). Design/methodology/approach The proposed models have been constructed by averaging both the main aircraft defining parameters (model derivatives) and pole-zero locations of longitudinal transfer functions. The suitability of the used methodologies has been checked from their capability to fit the short period and the phugoid modes. Previous analytical model arrangement has been required to match a uniform set of parameters, as the inner state variables are neither the same along the different published models nor between the additional models the authors have here contributed. Besides, moving models between the space state representation and transfer function is not just a simple averaging process, as neither the parameters nor the model orders are the same in the different published works. So, the junction of the models to a common set of parameters requires some residual’s computation and transient responses assessment (even Fourier analysis has been included to preserve the dominance of the phugoid) to keep the main properties of the models. The least mean squares technique has been used to have better fittings between SISO model parameters with state–space ones. Findings Both the SISO (Laplace) and state-space models for the longitudinal transfer function of an “averaged” fixed-wing UAV are proposed. Research limitations/implications More complicated situations, such as strong wind conditions, need another kind of models, usually based on finite element method simulation. These particular models apply fluid dynamics to study aerostructural aircraft aspects, such as flutter and other aerolastic aspects, the behavior under icing conditions or other distributed parameter problems. Even some models aim to control other aspects than the autopilot, such as the trajectory prediction. However, these models are not the most suitable for the basic UAV autopilot design (early design), so they are outside the objective of this paper. Obviously, the here-considered UAVs are not all the existing ones, but the number is large enough to consider the result as a reliable and realistic representation. The presented study may be seen as a stepping stone, allowing to include other UAVs in future works. Practical implications The proposed models can be used as benchmarks, or as a previous step to produce improved benchmarks, in order to have a common and realistic scenario the compare the benefits of the different control actions in UAV autopilots continuously presented in the published research. Originality/value A work with the scope of the presented one, merging model parameters from literature with other (often referred in papers and websites) whose parameters have been obtained by the authors has been never published.


Author(s):  
Mingxing Li ◽  
Yueke Wang ◽  
Mengjia Lu ◽  
Tian Sang

Abstract In this letter, a method to realize the topological rainbow trapping is presented, which is composed of gradual ordinary-topological-ordinary heterostructures based on two-dimensional photonic crystals with C-4 symmetry. In the proposed sandwiched structure, the two coupled topological edge states with different frequencies are separated and trapped in different positions, due to group velocity of near to zero. We have achieved the dual-mode of topological rainbow in one structure, which broadens the bandwidth. Besides, the dual-mode of topological rainbow under one mode excitation is also realized by using a simple bend design. The immunity to defects is also investigated and it is found our slowing light system has strong robustness. Finite Element Method simulation results verify our idea, and our work opens up a new way for frequency routing and broadband operation of topological photonic states.


2021 ◽  
Author(s):  
Yi Lin Yu ◽  
Hiroki Kishikawa ◽  
Shien-Kuei Liaw ◽  
Nobuo Goto ◽  
Wen-Fung Liu

Abstract This paper proposed a fiber sensor based on a Silicon core fiber incorporated with a fused silica grating design. The proposed structure is a nice sensitive in refractive index and temperature variation through theoretical calculation and finite element method simulation. The sensitivities of the refractive index in different polarization directions are 1838.7 and 1949.8 nm/RIU, respectively, within the index range from 1.28 to 1.38 RIU. The temperature range within 15 to 40 oC has the sensitivity up to 1.6 nm/oC by using ethanol analyte. The proposed fiber sensor can provide a method or a solution for intelligent sensing systems.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012074
Author(s):  
G Besuievsky ◽  
E García-Nevado ◽  
G Patow ◽  
B Beckers

Abstract Finite element methods for heat simulation at urban scale require mesh-volume models, where the meshing process requires a special attention in order to satisfy FEM requirements. In this paper we propose a procedural volume modeling approach for automatic creation of mesh-volume buildings, which are suitable for FEM simulations at urban scale. We develop a basic rule-set library and a building generation procedure that guarantee conforming meshes. In this way, urban models can be easily built for energy analysis. Our test-case shows a street created with building prototypes that fulfill all the requirements for being loaded in a FEM numerical platform such as Cast3M (www-cast3m.cea.fr).


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7288
Author(s):  
Inocêncio Sanches dos Santos-Neto ◽  
Christian Diniz Carvalho ◽  
Gilberto Balby Araújo Filho ◽  
Cassio Daniel Salomão Silva Andrade ◽  
Giselle Cutrim de Oliveira Santos ◽  
...  

Non-standard diesel blends can be harmful to the environment and human health. In this context, a simple analytical method to estimate the biodiesel mixture ratio in diesel was developed based on impedance spectroscopy (IS) associated with interdigitated sensors. In this article, four different interdigitated sensors with varied comb spacing (G) were simulated using the COMSOL Multiphysics software. Based on finite element simulations, four interdigitated electrode architectures were manufactured and evaluated. The best geometry was chosen according to theoretical data simulations, and its interdigitated electrodes were manufactured for the compositional evaluation of pseudo-binary biodiesel–diesel mixtures. According to the X-ray powder diffraction technique, the deposition of the conductive layer (Au0) over the surface of the dielectric substrate (SiO2) did not alter its phase composition. In the analysis of AFM and SEM, it was possible to observe irregular edges on the electrodes, possibly related to the manufacturing process of the thin layers and mechanical stability. Another characteristic observed in the AFM images was the height of the step of the gold layer of the sensor. Several cross sections were obtained, and the mean step value was 225.71 ± 0.0032 nm. Although there were differences in the roughness, the whole sensor had nanometric roughness. Based on the finite element method simulation performed, it can be assumed that the geometric parameters more suitable for the manufacturing of the electrode are W = 20 µm, L = 1000 µm, G = 50 µm, and N = 40 digits. The electrical characterization performed by impedance spectroscopy showed that we could differentiate between biodiesel and diesel fuels and their pseudo-binary mixtures in the low-frequency region.


Sign in / Sign up

Export Citation Format

Share Document