Research on Dynamic Traffic Flow Forecasting Based on Improved Particle Swarm Optimization Algorithm and Neural Network Theory

2012 ◽  
Vol 178-181 ◽  
pp. 2686-2689
Author(s):  
Bo Qi ◽  
Chang Xi Ma ◽  
Li Sun

Focused on urban traffic flow issue, the dynamic traffic flow forecasting model is established based on the improved particle optimization algorithm and nerve network theory. Taking the macro dynamic traffic flow as the model, the paper analyzes primarily the features of traffic flow by means of stage-distinguishing method, researches the improved particle optimization algorithm and nerve network theory further and establishes the dynamic traffic flow forecasting model. Finally, it utilizes this model to forecast the traffic flow on North Binghe Road in Lanzhou City. All the results demonstrate that this forecasting model is of higher prestige and proper availability.

2013 ◽  
Vol 680 ◽  
pp. 495-500 ◽  
Author(s):  
Jun Wei Gao ◽  
Zi Wen Leng ◽  
Bin Zhang ◽  
Xin Liu ◽  
Guo Qiang Cai

The urban traffic usually has the characteristics of time-variation and nonlinearity, real-time and accurate traffic flow forecasting has become an important component of the Intelligent Transportation System (ITS). The paper gives a brief introduction of the basic theory of Kalman filter, and establishes the traffic flow forecasting model on the basis of the adaptive Kalman filter, while the traditional Kalman filtering model has the shortcomings of lower forecasting accuracy and easily running into filtering divergence. The Sage&Husa adaptive filtering algorithm will appropriately estimate and correct the unknown or uncertain noise covariance, so as to improve the dynamic characteristics of the model. The simulation results demonstrate that the adaptive Kalman filtering forecasting model has stronger tracking capability and higher forecasting precision, which is applicable to the traffic flow forecasting.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Bin Lu ◽  
Xiaoying Gan ◽  
Haiming Jin ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
...  

Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rongji Zhang ◽  
Feng Sun ◽  
Ziwen Song ◽  
Xiaolin Wang ◽  
Yingcui Du ◽  
...  

Traffic flow forecasting is the key to an intelligent transportation system (ITS). Currently, the short-term traffic flow forecasting methods based on deep learning need to be further improved in terms of accuracy and computational efficiency. Therefore, a short-term traffic flow forecasting model GA-TCN based on genetic algorithm (GA) optimized time convolutional neural network (TCN) is proposed in this paper. The prediction error was considered as the fitness value and the genetic algorithm was used to optimize the filters, kernel size, batch size, and dilations hyperparameters of the temporal convolutional neural network to determine the optimal fitness prediction model. Finally, the model was tested using the public dataset PEMS. The results showed that the average absolute error of the proposed GA-TCN decreased by 34.09%, 22.42%, and 26.33% compared with LSTM, GRU, and TCN in working days, while the average absolute error of the GA-TCN decreased by 24.42%, 2.33%, and 3.92% in weekend days, respectively. The results indicate that the model proposed in this paper has a better adaptability and higher prediction accuracy in short-term traffic flow forecasting compared with the existing models. The proposed model can provide important support for the formulation of a dynamic traffic control scheme.


Sign in / Sign up

Export Citation Format

Share Document