Study on Blank Holder Force Control in Sheet Metal Forming Process

2012 ◽  
Vol 182-183 ◽  
pp. 1605-1608
Author(s):  
Xiao Juan Lin ◽  
Jian Hua Wang ◽  
Ke Gao Liu

BHF is an important technical parameter in sheet metal forming, its main function is controlling material flowing,avoiding wrinkling and fracture. The status of study on the control technology of variable blank holder force (VBHF) was summarized, focusing on the method of optimized controlling and the theory of developing trend of VBHF is introduced in the paper.

2003 ◽  
Vol 125 (4) ◽  
pp. 763-770 ◽  
Author(s):  
Neil Krishnan ◽  
Jian Cao

Sheet metal forming is one of the most important and frequently used manufacturing processes in industry today. One of the key parameters affecting the forming process is the blank holder force (BHF). In the past, researchers have demonstrated the advantages of varying the blank holder force during the forming process, that is, the two primary modes of failure in sheet metal forming (wrinkling and tearing) are avoided. This gives rise to improved formability, higher accuracy and better part consistency. In recent years, researchers have also shown increasing interest in forming processes where the blank holder force is varied spatially with the help of segmented binders or flexible binders. In this paper, we have combined the above two aspects and used a robust method to determine the blank holder force trajectories for a non-circular part using segmented binders. The proposed strategy is verified by implementing it into a finite element simulation. Binder force is treated as a system input. The displacement of the binder is used as a measure of the tendency to wrinkle, and is therefore treated as a system output. The parameters of the system are continuously identified and updated using a deterministic Auto-Regressive Moving-Average model (ARMA). The model is then used to control the binder displacement to a prescribed value by adjusting the system input, i.e., the binder force. In this manner, individual binder force profiles for each of the segmented binders are obtained. Due to the generic nature of the ARMA model, the strategy proposed in this paper can be applied to a variety of forming problems, making it a robust approach.


2010 ◽  
Vol 37-38 ◽  
pp. 521-524
Author(s):  
Yu Qing Shi

Wrinkling and tearing are the main failure modes in sheet-metal forming. Wrinkle may occur at the start of a punch stroke if the blank-holder force (BHF) is too low, and tearing may occur at the end of a stroke if the BHF is too high. The BHF is important for deep-drawing because of an effective way to promote deep formability sheet metal. They can be reduced or eliminated by manipulating a suitable BHF during sheet-metal forming. This paper presented an attempt to determine the effect of variable BHF on the tearing and wrinkling and investigated using 08Al sheet metal. The experiment show that tearing and wrinkling can be eliminated and the quality of deep drawing of rectangle parts can be improved using variable BHF.


2018 ◽  
Vol 84 (863) ◽  
pp. 18-00162-18-00162 ◽  
Author(s):  
Masaki YOKOYAMA ◽  
Satoshi KITAYAMA ◽  
Kiichiro KAWAMOTO ◽  
Takuya NODA ◽  
Takuji MIYASAKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document