Improved Camera Calibration Method Based on Vanishing Points

2012 ◽  
Vol 182-183 ◽  
pp. 649-654
Author(s):  
Yong Yong Duan ◽  
Xiu Mei Zhang ◽  
Long Zhao

To improve the accuracy and efficiency of field camera calibration, an improved fast camera calibration method is proposed. Nonlinear translation algorithm based on calibration field is adopted to solve intrinsic parameter while an improved vanishing points method is introduced to get extrinsic parameters. Surveillance camera is used to validate the proposed approach. Experiment results show that the algorithm is convenient and feasible.

2018 ◽  
Vol 10 (8) ◽  
pp. 1298 ◽  
Author(s):  
Lei Yin ◽  
Xiangjun Wang ◽  
Yubo Ni ◽  
Kai Zhou ◽  
Jilong Zhang

Multi-camera systems are widely used in the fields of airborne remote sensing and unmanned aerial vehicle imaging. The measurement precision of these systems depends on the accuracy of the extrinsic parameters. Therefore, it is important to accurately calibrate the extrinsic parameters between the onboard cameras. Unlike conventional multi-camera calibration methods with a common field of view (FOV), multi-camera calibration without overlapping FOVs has certain difficulties. In this paper, we propose a calibration method for a multi-camera system without common FOVs, which is used on aero photogrammetry. First, the extrinsic parameters of any two cameras in a multi-camera system is calibrated, and the extrinsic matrix is optimized by the re-projection error. Then, the extrinsic parameters of each camera are unified to the system reference coordinate system by using the global optimization method. A simulation experiment and a physical verification experiment are designed for the theoretical arithmetic. The experimental results show that this method is operable. The rotation error angle of the camera’s extrinsic parameters is less than 0.001rad and the translation error is less than 0.08 mm.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4643
Author(s):  
Sang Jun Lee ◽  
Jeawoo Lee ◽  
Wonju Lee ◽  
Cheolhun Jang

In intelligent vehicles, extrinsic camera calibration is preferable to be conducted on a regular basis to deal with unpredictable mechanical changes or variations on weight load distribution. Specifically, high-precision extrinsic parameters between the camera coordinate and the world coordinate are essential to implement high-level functions in intelligent vehicles such as distance estimation and lane departure warning. However, conventional calibration methods, which solve a Perspective-n-Point problem, require laborious work to measure the positions of 3D points in the world coordinate. To reduce this inconvenience, this paper proposes an automatic camera calibration method based on 3D reconstruction. The main contribution of this paper is a novel reconstruction method to recover 3D points on planes perpendicular to the ground. The proposed method jointly optimizes reprojection errors of image features projected from multiple planar surfaces, and finally, it significantly reduces errors in camera extrinsic parameters. Experiments were conducted in synthetic simulation and real calibration environments to demonstrate the effectiveness of the proposed method.


2011 ◽  
Vol 230-232 ◽  
pp. 723-727 ◽  
Author(s):  
Bao Feng Zhang ◽  
Xiu Zhen Tian ◽  
Xiao Ling Zhang

In order to simplify previous camera calibration method, this paper put forward an easy camera calibration method based on plane grid points on the foundation of Heikkila plane model calibration method. Intrinsic and extrinsic parameters of the camera are calibrated with MATLAB, then the rotation matrix and the translation vector are calculated. The experiment results show this method is not only simple in practice, but also can meet the needs of computer vision systems.


2014 ◽  
Vol 513-517 ◽  
pp. 3719-3722
Author(s):  
Wen Guo Li ◽  
Shao Jun Duan

We present a camera calibration method based on vanishing point, that is, the vanishing points of two groups of parallel lines on the target plane are used to achieve camera calibration. A series of known positions points on target plane are used as the feature points, and the target images are recorded, the image coordinates of feature points are used to calculate the coordinates of vanishing point, then the matrix between feature points and camera is used to obtain internal parameters of camera. Experimental results show that the proposed calibration algorithm is correct, simple and convenient.


2015 ◽  
Vol 719-720 ◽  
pp. 1184-1190
Author(s):  
Shuang Ran ◽  
Long Ye ◽  
Jing Ling Wang ◽  
Qin Zhang

The optimization of the camera’s intrinsic and extrinsic parameters is a key step after obtaining the initialized parameters’ state by considering the homography between the board space plane and the image plane in Zhengyou Zhang method. In this paper, we proposed a camera calibration optimization algorithm by adopting genetic algorithm and the simulated annealing algorithm. The experiment results demonstrate that our algorithm can improve the precision of the camera calibration to a certain extent.


2013 ◽  
Vol 26 (5) ◽  
pp. 1185-1199 ◽  
Author(s):  
Zhao Lugang ◽  
Wu Chengke ◽  
Ning Jifeng

Sign in / Sign up

Export Citation Format

Share Document