Finite Element Analysis of Metallic Structure of Unconventional Dedicated Tower Crane

2012 ◽  
Vol 184-185 ◽  
pp. 218-221
Author(s):  
Si Cong Yuan ◽  
Jing Qiang Shang ◽  
Dong Hong Wang ◽  
Dong Dong Wei ◽  
Chang Xiao

For the high hoisting height, wide using range, tower crane is widely utilized in the architecture construction, while there are some deficiencies in the high rising architecture such as chimney, so the performance can’t exerted. By virtue of computer aided technology, the finite element static analysis of metallic structure of unconventional dedicated tower crane is conducted in this paper, and the figures of stress and displacement are achieved for the two working conditions and two structures. It is proved that the results are satisfied the requirements of stiffness and strength, and also foundation is established for the further analysis.

Author(s):  
Anthony V. Viviano ◽  
Daniel H. Suchora ◽  
Hazel M. Pierson

Abstract Accumulator systems consist of a series of accumulator rolls, arranged either vertically or horizontally, used in many sheet processing lines for the purpose of storing up strip. Literature on roll design for this particular type of roll is scarce. Much of the present design theory is based on a static analysis assuming the entire contact load from the strip is uniformly distributed over the roll. A previous paper done on this subject focused on modeling the roll using finite element analysis (FEA) assuming this uniform pressure load on the roll. The purpose of this work was to incorporate non-linear contact elements between the strip and the roll body in a finite element analysis. This would allow the software to distribute the load from the strip to the roll, taking into account friction and contact losses. Once accomplished, this load was placed on various roll design configurations, of which included variation in the number of roll stiffeners and the thickness of the roll body and the end plates. These results were also compared to the previous uniform pressure FEA in order to assess the validity of the uniform pressure assumption. Based on these results, a roll design methodology is presented.


2012 ◽  
Vol 605-607 ◽  
pp. 397-400
Author(s):  
Dong Qing Lv

Completed the finite element static analysis on the crossbeam of a certain type of automatic hydraulic tile press and discussed stress and transfiguration of the crossbeam. The result can provide reference for design, and the discussion will be useful for mechanical engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoying Liu ◽  
Yong Yue ◽  
Xuyang Wu ◽  
Yanhua Hao ◽  
Yong Lu

On the basis of computer aided modeling technology, this paper proposes a porous structure modeling method based on Grasshopper visual programming language and Unigraphics NX (UG) secondary development platform. The finite element model of the foot was established, and then models of shoe soles with four basic porous structures of cross, diamond, star, and x were established. Each structure was set with a cylindrical radius of 1, 2, and 3 mm, and a total of 12 porous structure sole models were established. The shock absorption effect of the sole on the foot was evaluated by the deformation of the sole, the peak plantar pressure, and the peak stress of metatarsal bones. It is found that the maximum value of the sole deformation of the diamond porous sole is 4.725 mm, the peak plantar pressure is 105.1 Pa, and the first and second metatarsal peak pressures are 2.230 MPa and 3.407 MPa, which have the best shock absorption effect. It shows that the porous structure plays an important role in the cushioning of the sole. The biomechanical effects of porous soles on feet are studied by computer-aided technology and finite element analysis. This study provides a new research method for the cushioning design of shoe soles and has important reference value for the design of footwear.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1296-1299
Author(s):  
Yong Huan Luo ◽  
Zheng Lin Feng ◽  
Jun Liu ◽  
Hong Feng Guo

This paper, A research for the sealing capsule which used in the construction of the underwater cap of Hong Kong-Zhuhai-Macao Bridge. Through the introduction of precast pile cap construction, combined with the sealing of the capsule works, and the basic structure of the sealing of the capsule with installation design. We establish correlation model, combined with the actual working conditions, the application of the finite element analysis of the sealing capsules water sealing characteristics simulation. It shows that the sealing capsule can well meet the actual needs of the Hong Kong-Zhuhai-Macao Bridge underwater cap construction.


2013 ◽  
Vol 753-755 ◽  
pp. 1250-1253
Author(s):  
Na Wu

Nunmerical analysis method was used to analyze multi-chip tapered leaf spring with the same area under vertical loads, in which the brick element of twenty nodes was used to model the spring leaves and the solid modeling using in ansys was modeled in 3D softwar. Each piece of nodes were coupled in order to simulate the leaf spring assembly process. The results of six modes analysis and static analysis could be the research basis for the further study of leaf spring.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 148
Author(s):  
Wan Muhammad Syahmi Wan Fauzi ◽  
Abdul Rahman Omar ◽  
Helmi Rashid

Recently, studies concerning motorcycle have been an overwhelming area of research interest. As an alternative to the real world assessment, researchers have utilized motorcycle simulator as a workstation to conduct studies in the motorcycle niche area. This paper deal with the development of a new motorcycle simulator named Semi-Interface Motorcycle Simulator (SiMS). Combination of Computer Aided Design (CAD) and Finite Element Analysis (FEA) software made it possible to design and simulates the motorcycle simulator’s conceptual design before being fabricated. The SiMS setup not only provides a near-to-real and immerse motorcycle riding experience on a super sport motorcycle model, but it also allows safer high speed motorcycle simulations to be conducted in a controlled environment that is portable and ergonomically easier to transport to various venues.  


Sign in / Sign up

Export Citation Format

Share Document