Finite-Time Chaos Control and Synchronization of the New Chaotic System with Unknown Parameters

2012 ◽  
Vol 187 ◽  
pp. 115-121
Author(s):  
Ke E Li ◽  
Yu Hua Xu

In this paper, a new chaotic system is discussed. Some basic dynamical properties are studied , and we also deal with the finite-time chaos control and synchronization of the new chaotic system. Based on the finite-time stability theory, the control law are proposed to drive chaos to equilibria within finite time, and the control law and the parameter update law are proposed to realize finite-time synchronization of the new chaotic system under unknown parameters. The controller is simple and robust to noise. Numerical simulations are given to show the effectiveness of the proposed controllers.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Lidong Liu ◽  
Jinfeng Hu ◽  
Huiyong Li ◽  
Jun Li ◽  
Zishu He ◽  
...  

It is of vital importance to exactly estimate the unknown parameters of chaotic systems in chaos control and synchronization. In this paper, we present a method for estimating one-dimensional discrete chaotic system based on mean value method (MVM). It is proposed by exploiting the ergodic and synchronization features of chaos. It can effectively estimate the parameter value, and it is more exact than MVM. Finally, numerical simulations on Chebyshev map and Tent map show that the proposed method has better performance of parameter estimation than MVM.


Author(s):  
Zuoxun Wang ◽  
Jiaxun Liu ◽  
Fangfang Zhang ◽  
Sen Leng

Although a large number of hidden chaotic attractors have been studied in recent years, most studies only refer to integer-order chaotic systems and neglect the relationships among chaotic attractors. In this paper, we first extend LE1 of sprott from integer-order chaotic systems to fractional-order chaotic systems, and we add two constant controllers which could produce a novel fractional-order chaotic system with hidden chaotic attractors. Second, we discuss its complicated dynamic characteristics with the help of projection pictures and bifurcation diagrams. The new fractional-order chaotic system can exhibit self-excited attractor and three different types of hidden attractors. Moreover, based on fractional-order finite time stability theory, we design finite time synchronization scheme of this new system. And combination synchronization of three fractional-order chaotic systems with hidden chaotic attractors is also derived. Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization methods.


2013 ◽  
Vol 321-324 ◽  
pp. 921-924 ◽  
Author(s):  
Su Hai Huang

This paper deals with the finite-time chaos synchronization of the new chaotic system [with uncertain parameters. Based on the finite-time stability theory and adaptive technique, a controller has been designed to realize finite-time chaos projective synchronization and parameter identification. Moreover, numerical simulation result is included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.


2013 ◽  
Vol 397-400 ◽  
pp. 1345-1350
Author(s):  
Feng Liu

Finite-time chaos control of Lorenz chaotic system applying the passive control method is investigated in this paper. Based on the finite-time stability theory and the passive control technique, the passive controller are proposed to realize finite-time chaos control of Lorenz chaotic system. The controller is robust to noise. Both theoretical and numerical simulations show the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ma Yongguang ◽  
Dong Zijian

This paper presents a finite-time adaptive synchronization strategy for a class of new hyperchaotic systems with unknown slave system’s parameters. Based on the finite-time stability theory, an adaptive control law is derived to make the states of the new hyperchaotic systems synchronized in finite-time. Numerical simulations are presented to show the effectiveness of the proposed finite time synchronization scheme.


2018 ◽  
Vol 28 (4) ◽  
pp. 613-624
Author(s):  
Qiaoping Li ◽  
Sanyang Liu ◽  
Yonggang Chen

Abstract In this paper, for multiple different chaotic systems with fully unknown parameters, a novel synchronization scheme called ‘modified function projective multi-lag generalized compound synchronization’ is put forward. As an advantage of the new method, not only the addition and subtraction, but also the multiplication of multiple chaotic systems are taken into consideration. This makes the signal hidden channels more abundant and the signal hidden methods more flexible. By virtue of finite-time stability theory and an adaptive control technique, a finite-time adaptive control scheme is established to realize the finite-time synchronization and to properly evaluate the unknown parameters. A detailed theoretical derivation and a specific numerical simulation demonstrate the feasibility and validity of the advanced scheme.


Sign in / Sign up

Export Citation Format

Share Document