Hidden Chaotic Attractors and Synchronization for a New Fractional-Order Chaotic System

Author(s):  
Zuoxun Wang ◽  
Jiaxun Liu ◽  
Fangfang Zhang ◽  
Sen Leng

Although a large number of hidden chaotic attractors have been studied in recent years, most studies only refer to integer-order chaotic systems and neglect the relationships among chaotic attractors. In this paper, we first extend LE1 of sprott from integer-order chaotic systems to fractional-order chaotic systems, and we add two constant controllers which could produce a novel fractional-order chaotic system with hidden chaotic attractors. Second, we discuss its complicated dynamic characteristics with the help of projection pictures and bifurcation diagrams. The new fractional-order chaotic system can exhibit self-excited attractor and three different types of hidden attractors. Moreover, based on fractional-order finite time stability theory, we design finite time synchronization scheme of this new system. And combination synchronization of three fractional-order chaotic systems with hidden chaotic attractors is also derived. Finally, numerical simulations demonstrate the effectiveness of the proposed synchronization methods.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Cui Yan ◽  
He Hongjun ◽  
Lu Chenhui ◽  
Sun Guan

Fractional order systems have a wider range of applications. Hidden attractors are a peculiar phenomenon in nonlinear systems. In this paper, we construct a fractional-order chaotic system with hidden attractors based on the Sprott C system. According to the Adomain decomposition method, we numerically simulate from several algorithms and study the dynamic characteristics of the system through bifurcation diagram, phase diagram, spectral entropy, and C0 complexity. The results of spectral entropy and C0 complexity simulations show that the system is highly complex. In order to apply such research results to engineering practice, for such fractional-order chaotic systems with hidden attractors, we design a controller to synchronize according to the finite-time stability theory. The simulation results show that the synchronization time is short and the robustness is stable. This paper lays the foundation for the study of fractional order systems with hidden attractors.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 559 ◽  
Author(s):  
Liang Chen ◽  
Chengdai Huang ◽  
Haidong Liu ◽  
Yonghui Xia

The paper proves a unified analysis for finite-time anti-synchronization of a class of integer-order and fractional-order chaotic systems. We establish an effective controller to ensure that the chaotic system with unknown parameters achieves anti-synchronization in finite time under our controller. Then, we apply our results to the integer-order and fractional-order Lorenz system, respectively. Finally, numerical simulations are presented to show the feasibility of the proposed control scheme. At the same time, through the numerical simulation results, it is show that for the Lorenz chaotic system, when the order is greater, the more quickly is anti-synchronization achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Liu ◽  
Xuefeng Cheng ◽  
Ping Zhou

In this study, a modified fractional-order Lorenz chaotic system is proposed, and the chaotic attractors are obtained. Meanwhile, we construct one electronic circuit to realize the modified fractional-order Lorenz chaotic system. Most importantly, using a linear resistor and a fractional-order capacitor in parallel coupling, we suggested one chaos synchronization scheme for this modified fractional-order Lorenz chaotic system. The electronic circuit of chaos synchronization for modified fractional-order Lorenz chaotic has been given. The simulation results verify that synchronization scheme is viable.


Open Physics ◽  
2012 ◽  
Vol 10 (5) ◽  
Author(s):  
Hadi Delavari ◽  
Danial Senejohnny ◽  
Dumitru Baleanu

AbstractIn this paper, we propose an observer-based fractional order chaotic synchronization scheme. Our method concerns fractional order chaotic systems in Brunovsky canonical form. Using sliding mode theory, we achieve synchronization of fractional order response with fractional order drive system using a classical Lyapunov function, and also by fractional order differentiation and integration, i.e. differintegration formulas, state synchronization proved to be established in a finite time. To demonstrate the efficiency of the proposed scheme, fractional order version of a well-known chaotic system; Arnodo-Coullet system is considered as illustrative examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jian-Bing Hu ◽  
Ling-Dong Zhao

We investigate synchronizing fractional-order Volta chaotic systems with nonidentical orders in finite time. Firstly, the fractional chaotic system with the same structure and different orders is changed to the chaotic systems with identical orders and different structure according to the property of fractional differentiation. Secondly, based on the lemmas of fractional calculus, a controller is designed according to the changed fractional chaotic system to synchronize fractional chaotic with nonidentical order in finite time. Numerical simulations are performed to demonstrate the effectiveness of the method.


2013 ◽  
Vol 321-324 ◽  
pp. 921-924 ◽  
Author(s):  
Su Hai Huang

This paper deals with the finite-time chaos synchronization of the new chaotic system [with uncertain parameters. Based on the finite-time stability theory and adaptive technique, a controller has been designed to realize finite-time chaos projective synchronization and parameter identification. Moreover, numerical simulation result is included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.


2022 ◽  
Author(s):  
Shaohui Yan ◽  
Qiyu Wang ◽  
Ertong Wang ◽  
Xi Sun ◽  
Zhenlong Song

Abstract The definition of fractional calculus is introduced into the 5D chaotic system, and the 5D fractional-order chaotic system is obtained. The new 5D fractional-order chaotic system has no equilibrium, multi-scroll hidden attractor and multi-stability. By analyzing the time-domain waveform, phase diagram, bifurcation diagram and complexity, it is found that the system has no equilibrium but is very sensitive to parameters and initial values. With the variation of different parameters, the system can produce attractors of different scroll types accompanied by bursting oscillation. Secondly, the multi-stability of the hidden attractor is studied. Different initial values lead to the coexistence of attractors of different scroll number, which shows the advantages of the system. The correctness and realizability of the fractional-order chaotic system are proved by analog circuit and physical implement. Finally, because of the high security of multi-scroll attractor and hidden attractor, finite-time synchronization based on the fractional-order chaotic system is studied, which has a good application prospect in the field of secure communication.


2013 ◽  
Vol 24 (09) ◽  
pp. 1350058 ◽  
Author(s):  
ZHAOYAN WU ◽  
QINGLING YE ◽  
DANFENG LIU

In this paper, finite-time synchronization of dynamical networks coupled with complex-variable chaotic systems is investigated. According to Lyapunov function method and finite-time stability theory, both the dynamical networks without and with coupling delay are considered through designing proper finite-time controllers. Several sufficient conditions for finite-time synchronization are derived and verified to be effective by some numerical examples.


Sign in / Sign up

Export Citation Format

Share Document