Study on Twin-Rotary Motion Control System Based on Siemens Technology CPU

2012 ◽  
Vol 229-231 ◽  
pp. 2201-2204
Author(s):  
Cun Hai Pan ◽  
Hui Li ◽  
Su Mei Du ◽  
Wei Gao

A twin-rotary motion control system was built based on a cam technology and Siemens S7-300T PLC in this paper. The system can position accurately in a three-dimension space using a twin-servo closed loop control system and can real-time monitor various parameters of positioning system by HMI (Human Machine Interface). It also can automatically collect various parameter information and judge the type of fault.At the same time, the degree of automation has been raised and the cost of production was reduced.

2013 ◽  
Vol 655-657 ◽  
pp. 1361-1364
Author(s):  
Yan Liu

Frequency and amplitude of the existing mechanical suspension performance test rig can not change. And it has signal function. Frequency changing devices and amplitude adjustment mechanism were designed on it by study. Frequency and amplitude of the improved test rig can change within a certain range. It has two control algorithms: fixed-frequency vibration and sweep vibration. And the used closed-loop control in the system ensures the reliability of the system. The results show feasibility and correctness of this control system by a large number of experiments. It improves the function of the test rig and decreases the cost of study.


2011 ◽  
Vol 219-220 ◽  
pp. 3-7
Author(s):  
Ning Zhang ◽  
Rong Hua Liu

An expert control system based on transient response patterns and expert system techniques is proposed in this paper. Depending on the features of the closed-loop control system determines the control decision and adjusts the parameters of the controller. The proposed method requires minimal proper information about the controlled plant and, with the linear re-excitation learning method, the system is kept satisfying the performance criterion.


2017 ◽  
Vol 3 (2) ◽  
pp. 363-366
Author(s):  
Tobias Steege ◽  
Mathias Busek ◽  
Stefan Grünzner ◽  
Andrés Fabían Lasagni ◽  
Frank Sonntag

AbstractTo improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.Hereby presented is the developed hard- and software requiered to control the oxygen content within this microfluidic system. This system forms a closed-loop control system which is parameterized and evaluated.


Author(s):  
Bahram Yaghooti ◽  
Ali Siahi Shadbad ◽  
Kaveh Safavi ◽  
Hassan Salarieh

In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document