Consensus Function Based on Matrix Factorization

2012 ◽  
Vol 235 ◽  
pp. 15-19
Author(s):  
Li Min Liu ◽  
Xiao Ping Fan ◽  
Yue Shan Xie

Clustering ensemble has been known as an effective method to improve the robustness and stability of clustering analysis. Clustering ensemble solves the problem in two steps:firstly,generating a large set of clustering partitions based on the clustering algorithms;secondly,combining them using a consensus function to get the final clustering result. The key technology of clustering ensemble is the proper consensus function. Recent research proposed using the matrix factorization to solve clustering ensemble. In this paper, we firstly analyze some traditional matrix factorization algorithms; secondly, we propose a new consensus function using binary nonnegative matrix factorization (BMF) and give the optimization algorithm of BMF; lastly, we propose the new framework of clustering ensemble algorithm and give some experiments on UCI Machine Learning Repository. The experiments show that the new algorithm is effective and clustering performance could be significantly improved.

2019 ◽  
Vol 163 ◽  
pp. 624-631 ◽  
Author(s):  
Wenting Ye ◽  
Hongjun Wang ◽  
Shan Yan ◽  
Tianrui Li ◽  
Yan Yang

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bing Tang ◽  
Linyao Kang ◽  
Li Zhang ◽  
Feiyan Guo ◽  
Haiwu He

Nonnegative matrix factorization (NMF) has been introduced as an efficient way to reduce the complexity of data compression and its capability of extracting highly interpretable parts from data sets, and it has also been applied to various fields, such as recommendations, image analysis, and text clustering. However, as the size of the matrix increases, the processing speed of nonnegative matrix factorization is very slow. To solve this problem, this paper proposes a parallel algorithm based on GPU for NMF in Spark platform, which makes full use of the advantages of in-memory computation mode and GPU acceleration. The new GPU-accelerated NMF on Spark platform is evaluated in a 4-node Spark heterogeneous cluster using Google Compute Engine by configuring each node a NVIDIA K80 CUDA device, and experimental results indicate that it is competitive in terms of computational time against the existing solutions on a variety of matrix orders. Furthermore, a GPU-accelerated NMF-based parallel collaborative filtering (CF) algorithm is also proposed, utilizing the advantages of data dimensionality reduction and feature extraction of NMF, as well as the multicore parallel computing mode of CUDA. Using real MovieLens data sets, experimental results have shown that the parallelization of NMF-based collaborative filtering on Spark platform effectively outperforms traditional user-based and item-based CF with a higher processing speed and higher recommendation accuracy.


2006 ◽  
Vol 95 (4) ◽  
pp. 2199-2212 ◽  
Author(s):  
Matthew C. Tresch ◽  
Vincent C. K. Cheung ◽  
Andrea d'Avella

Several recent studies have used matrix factorization algorithms to assess the hypothesis that behaviors might be produced through the combination of a small number of muscle synergies. Although generally agreeing in their basic conclusions, these studies have used a range of different algorithms, making their interpretation and integration difficult. We therefore compared the performance of these different algorithms on both simulated and experimental data sets. We focused on the ability of these algorithms to identify the set of synergies underlying a data set. All data sets consisted of nonnegative values, reflecting the nonnegative data of muscle activation patterns. We found that the performance of principal component analysis (PCA) was generally lower than that of the other algorithms in identifying muscle synergies. Factor analysis (FA) with varimax rotation was better than PCA, and was generally at the same levels as independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA performed very well on data sets corrupted by constant variance Gaussian noise, but was impaired on data sets with signal-dependent noise and when synergy activation coefficients were correlated. Nonnegative matrix factorization (NMF) performed similarly to ICA and FA on data sets with signal-dependent noise and was generally robust across data sets. The best algorithms were ICA applied to the subspace defined by PCA (ICAPCA) and a version of probabilistic ICA with nonnegativity constraints (pICA). We also evaluated some commonly used criteria to identify the number of synergies underlying a data set, finding that only likelihood ratios based on factor analysis identified the correct number of synergies for data sets with signal-dependent noise in some cases. We then proposed an ad hoc procedure, finding that it was able to identify the correct number in a larger number of cases. Finally, we applied these methods to an experimentally obtained data set. The best performing algorithms (FA, ICA, NMF, ICAPCA, pICA) identified synergies very similar to one another. Based on these results, we discuss guidelines for using factorization algorithms to analyze muscle activation patterns. More generally, the ability of several algorithms to identify the correct muscle synergies and activation coefficients in simulated data, combined with their consistency when applied to physiological data sets, suggests that the muscle synergies found by a particular algorithm are not an artifact of that algorithm, but reflect basic aspects of the organization of muscle activation patterns underlying behaviors.


Author(s):  
Tao Sun ◽  
Saeed Mashdour ◽  
Mohammad Reza Mahmoudi

Clustering ensemble is a new problem where it is aimed to extract a clustering out of a pool of base clusterings. The pool of base clusterings is sometimes referred to as ensemble. An ensemble is to be considered to be a suitable one, if its members are diverse and any of them has a minimum quality. The method that maps an ensemble into an output partition (called also as consensus partition) is named consensus function. The consensus function should find a consensus partition that all of the ensemble members agree on it as much as possible. In this paper, a novel clustering ensemble framework that guarantees generation of a pool of the base clusterings with the both conditions (diversity among ensemble members and high-quality members) is introduced. According to its limitations, a novel consensus function is also introduced. We experimentally show that the proposed clustering ensemble framework is scalable, efficient and general. Using different base clustering algorithms, we show that our improved base clustering algorithm is better. Also, among different consensus functions, we show the effectiveness of our consensus function. Finally, comparing with the state of the art, we find that the clustering ensemble framework is comparable or even better in terms of scalability and efficacy.


2019 ◽  
Vol 31 (2) ◽  
pp. 417-439 ◽  
Author(s):  
Andersen Man Shun Ang ◽  
Nicolas Gillis

We propose a general framework to accelerate significantly the algorithms for nonnegative matrix factorization (NMF). This framework is inspired from the extrapolation scheme used to accelerate gradient methods in convex optimization and from the method of parallel tangents. However, the use of extrapolation in the context of the exact coordinate descent algorithms tackling the nonconvex NMF problems is novel. We illustrate the performance of this approach on two state-of-the-art NMF algorithms: accelerated hierarchical alternating least squares and alternating nonnegative least squares, using synthetic, image, and document data sets.


Sign in / Sign up

Export Citation Format

Share Document