Material Handling Mechanisms Used in Flexible Manufacturing Systems

2012 ◽  
Vol 245 ◽  
pp. 197-202 ◽  
Author(s):  
Lucian Adrian Mihaila

In small and medium batch series manufacturing the small tool and workpiece changing time is one of the main objectives to follow in obtaining high productivity. These auxiliary times are defined as the times consumed with preparing and changing the next tool or workpiece to follow the machining process, times that usually overlap the machining process. For this purpose machining centres are equipped with an automatic tool changer system and an automatic pallet changer system. The palletizing systems imply eliminating the times consumed with the alignment, fixing and clamping of the workpieces, these systems consisting of several mechanisms: the pallet, the automatic pallet changing mechanism, the positioning mechanism and the pallet clamp/unclamp mechanism. In this paper we present an general overview of the automatic pallet changing mechanisms used both in flexible manufacturing systems and machining centres.

2013 ◽  
Vol 329 ◽  
pp. 172-175
Author(s):  
Jin Feng Wang ◽  
Guang Feng Zhang ◽  
Xian Zhang Feng

For the rigid automatic line, although its production efficiency is high, but the flexible is less in the machining process, the machine and the assembly line need be shut down to adjust or replace for machine tools, jigs, tools, and tooling equipment, etc. When the work pieces for the machining is changed. It caused a heavy workload, wasting a lot of time. Flexible Manufacturing Systems consisted of unified control system, material handling system and a set of digital control processing equipment; it is the automation machinery manufacturing system to adapt the processing object transform. It has become one of the important means of manufacturing industry to obtain the advantages of market competitiveness. This paper gives the composition, algorithm and application of learning system concept, composition, and classification, characteristics of the flexible manufacturing system, the development overview and its application are induced in this paper.


2013 ◽  
Vol 371 ◽  
pp. 431-435 ◽  
Author(s):  
Claudiu Obreja ◽  
Gheorghe Stan ◽  
Lucian Adrian Mihaila ◽  
Marius Pascu

With a view of increasing the productivity on CNC machine tools one of the main solution is to reduce, as much as possible, the auxiliary time consumed with the set-up and replacement of the tools and work pieces engaged in the machining process. Reducing the total time of the tool changing process by the automatic tool changer system can be also achieved through minimizing the number of movements needed for the actual exchange of the tool, from the tool magazine to the machine spindle (the optimization of the tool changing sequences). This paper presents a new design method based on the tree-graph theory. We consider an existing automatic tool changing system, mounted on the milling and boring machining centre, and by applying the new method we obtain all the possible configurations to minimize the tool changing sequence of the automatic tool changer system. By making use of the method proposed we obtain the tool changing sequences with minimum necessary movements needed to exchange the tool. Reconfiguring an existing machine tool provided with an automatic tool changer system by making use of the proposed method leads to obtaining the smallest changing time and thus high productivity.


2011 ◽  
Vol 143-144 ◽  
pp. 913-916
Author(s):  
Xun Mei Han

With CAXA software I designed the structure of the handling manipulator in the FMS. And focus for the design of the structure, introduced the hardware implementation of robot manipulator with the same characteristics of stepping away from its open-loop position control. The manipulator is mainly used for flexible manufacturing systems in material handling, flexible movement, safe, reliable, easy to adjust and control, simple operation, easy to implement process automation.


Sign in / Sign up

Export Citation Format

Share Document