Characteristics Analysis of Flexible Manufacturing Systems

2013 ◽  
Vol 329 ◽  
pp. 172-175
Author(s):  
Jin Feng Wang ◽  
Guang Feng Zhang ◽  
Xian Zhang Feng

For the rigid automatic line, although its production efficiency is high, but the flexible is less in the machining process, the machine and the assembly line need be shut down to adjust or replace for machine tools, jigs, tools, and tooling equipment, etc. When the work pieces for the machining is changed. It caused a heavy workload, wasting a lot of time. Flexible Manufacturing Systems consisted of unified control system, material handling system and a set of digital control processing equipment; it is the automation machinery manufacturing system to adapt the processing object transform. It has become one of the important means of manufacturing industry to obtain the advantages of market competitiveness. This paper gives the composition, algorithm and application of learning system concept, composition, and classification, characteristics of the flexible manufacturing system, the development overview and its application are induced in this paper.

2012 ◽  
Vol 245 ◽  
pp. 197-202 ◽  
Author(s):  
Lucian Adrian Mihaila

In small and medium batch series manufacturing the small tool and workpiece changing time is one of the main objectives to follow in obtaining high productivity. These auxiliary times are defined as the times consumed with preparing and changing the next tool or workpiece to follow the machining process, times that usually overlap the machining process. For this purpose machining centres are equipped with an automatic tool changer system and an automatic pallet changer system. The palletizing systems imply eliminating the times consumed with the alignment, fixing and clamping of the workpieces, these systems consisting of several mechanisms: the pallet, the automatic pallet changing mechanism, the positioning mechanism and the pallet clamp/unclamp mechanism. In this paper we present an general overview of the automatic pallet changing mechanisms used both in flexible manufacturing systems and machining centres.


2019 ◽  
Vol 957 ◽  
pp. 195-202 ◽  
Author(s):  
Elizaveta Gromova

With the onset of the Fourth Industrial Revolution, the business environment becomes inherent in changes that occur with maximum speed, as well as characterized by the systemic nature of the consequences. One of them is the transformation of operational management models in industrial enterprises. The modern manufacturing system should focus not only on speed of response and flexibility, but also on the cost and quality of products. Integration of effective models: agile manufacturing, quick response manufacturing and lean production, in order to extract the best from them is proposed. The purpose of this study is to analyze this flexible manufacturing system and to relate it to the current state of the Russian industrial development. Theoretical and practical aspects of this model are presented. The examples of the flexible models introduction in the Russian industrial sector is allocated. The conclusion about the necessity of the flexible manufacturing systems implementation for the Russian industrial development is drawn.


Author(s):  
Mangey Ram ◽  
Nupur Goyal

Manufacturing systems are increasingly becoming automated and complex in nature. Highly reliable and flexible manufacturing systems (FMSs) are the necessity of manufacturing industries to fulfill the increasing customized demands. Worldwide, FMSs are used in industries to attain high productivity in production environments with rapidly and continuously changing manufactured goods structures and demands. Reliability prediction plays a very significant role in system design in the manufacturing industry, and two crucial issues in the prediction of system reliability are failures of equipment and system configuration. This novel work presents a stochastic model to analyze the performance of an FMS through its reliability characteristics, in the concern of its equipment. To improve the reliability of FMS, determine the sensitivity of the reliability measures of FMS. FMS consists of many components such as machine tools like CNC, automatic handling and material storage, controller and robot for serving load. The designed system is studied by using the Markov process, supplementary variable technique, Laplace transformation, coverage factor and Gumbel–Hougaard family copula to obtain various reliability measures. For some realistic approach, particular cases and graphical illustrations are also obtained.


Author(s):  
Angella Thomas ◽  
David A. Guerra-Zubiaga ◽  
John Cohran

Manufacturing system integration is an important industrial and research activity to explore Next Generation Automated Systems (NGAS). Manufacturing systems has been incorporating flexible, reconfigurable, smart and intelligent features. Advances in technology and trends such Industry 4.0 will revolutionize the manufacturing industry tremendously. Important subjects in this direction are Digital Twins, Internet of Things, and Collaborative Robots among others, are integral to continue the progression to create smart and reliable manufacturing processes. This paper aims to implement a method applying these concepts in a Flexible Manufacturing System (FMS) by providing a broad view of NGAS.


2013 ◽  
Vol 581 ◽  
pp. 527-532
Author(s):  
Peter Košťál ◽  
Daynier Rolando Delgado Sobrino

Flexible Manufacturing Systems provide a fast reaction possibility to the changes in production conditions. As production conditions change, other changes in the final product like changes of the product variants, or other unpredictable events may be also expected. For achieving a quick responsibility of production, it is necessary to leave the traditional form of production process planning. Nowadays most of the products are designed by using the CAx software. The product design 3D model contains not only the geometrical data of product, but may contain a part of the process plan and technological data as well.


Sign in / Sign up

Export Citation Format

Share Document