The Study on the Support Technology of the Soft Rock Roadway for Coal Mining under Sea

2012 ◽  
Vol 256-259 ◽  
pp. 1919-1922
Author(s):  
Xiang Gang Wang ◽  
Kang Yuan ◽  
Xun Zhen Wu ◽  
Wei Shen Zhu

Based on the engineering background of -350m level roadway in Beizao Coal Mine ,three schemes about the excavation and support of the roadway were simulated via the coupled fluid-solid theorem in the the finite difference software FLAC3D. The stability of the soft rock roadway and the effect of bolt-grouting support were analysed according to the obtained numerical results of displacement,principal stress and plastic zone.It is concluded that the seepage has an influence on the stability of the soft rock roadway,besides,it is proved that the bolt-grouting support is rational and effective in the design of support concerning the soft rock roadway.The study has important guiding significance to other similar engineering.

2020 ◽  
Vol 9 (1) ◽  
pp. 21-22
Author(s):  
Xiaolei Chen ◽  

China is rich in coal resources. In most cases, coal resources are obtained through the way of mining. In the process of mining, it is necessary to control the application of mining technology, otherwise it will easily cause damage to the geological structure. With the increasing demand of social resources in recent years, shallow mining has been unable to meet the needs of the society, while deep mining is facing the problem of soft rock layer, which can not guarantee the stability and safety. Based on this, this paper will focus on the coal mine soft rock roadway support technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


2013 ◽  
Vol 838-841 ◽  
pp. 1884-1890 ◽  
Author(s):  
Guang Long Qu ◽  
Yan Fa Gao ◽  
Liu Yang ◽  
Bin Jing Xu ◽  
Guo Lei Liu ◽  
...  

Compared with I-shaped and U-shaped supports in soft rock roadway, concrete-filled steel tubular (CFST) support, as a new supporting form, has stronger bearing capacity with reasonable price. So it is becoming more and more popular in roadway supporting of coal mine in China. In this article, the surrounding rock in soft rock roadway was classified into three different types: hard rock in deep coal mine, soft surrounding rock, extremely soft surrounding rock. And, according to the characteristics of deformation failure of the CFST support and the surrounding rock in the industrial tests, three different strength assessments, including assessment of axial compressive strength, assessment of lateral flexural performance, assessment of hardening rate of core concrete, were proposed through mechanical analysis and laboratory tests for the three different types of the surrounding rock, respectively. Moreover, aimed to insufficient flexural strength of the support or low hardening rate of the core concrete in some of the roadway supporting, strengthening lateral flexural performance or making early strength concrete was necessary for the above unfavorable situations. The laboratory test results showed that the ultimate bearing capacity for the CFST support with φ194*8mm of steel tube reinforced by φ38mm round steel was 31% greater than that of the unreinforced one, 177% greater than that of the U-shaped one with equivalent weight per unit length.


2011 ◽  
Vol 243-249 ◽  
pp. 2666-2669
Author(s):  
Zhan Jin Li ◽  
Yang Zhang ◽  
Xue Li Zhao

With the depth increasing continuously, more complicated of geological conditions, will make intersection in deep soft rock roadway is very difficult to support. In order to solve the intersection problem of difficult to support, combined with the third levels of the Fifth Coal Mine of Hemei, the coupling supporting design—anchor-mesh-cable + truss to control stability of crossing point—is proposed. Based software of FLAC3D, simulate the program applicable in deep soft rock roadway intersection. Application results show that the coupling support technology of anchor-mesh-cable + truss can effectively control the deformation of intersection in deep soft rock roadway.


2013 ◽  
Vol 868 ◽  
pp. 251-254 ◽  
Author(s):  
Hui Yu ◽  
Ling Gen Kong ◽  
Zhi Yong Niu ◽  
Shi Ting Zhu ◽  
Dan Yang Jing

The roof of 12501 transportation roadway of Tunlan mine is friable. To solve the problem of large roadway deformation, the bolt-mesh-anchor support scheme is put forward. With the FLAC3D numerical software in the program, the simulation analysis shows that the program can effectively increase the roadway confining pressure to improve the state of the surrounding rock stress, reduce roadway displacement and deformation and thus keep the stability of the surrounding rock. The results show that Bolt and cable support can effectively control the surrounding rock, with the roadway convergence rate small, and the support system safe.


2014 ◽  
Vol 84 ◽  
pp. 812-817
Author(s):  
Li Xuefeng ◽  
Cheng Guihai ◽  
Li Xiaoquan ◽  
Zhang Ruichong

2014 ◽  
Vol 580-583 ◽  
pp. 556-559
Author(s):  
Yong Sheng Liu ◽  
Wang Liu ◽  
Xing Yu Dong

The deformation and support technology of soft roadway is a very important problem in mine. Based on the roadway’s deformation of Jian Xin Mine of Jiangxi Fengcheng Mining Bureau, the mechanics mechanism and reasons of the soft rock roadway deformation are analyzed. And the three kinds of support technologies which are suitable for soft rock roadway are put forward. The support technologies have been used in the soft rock roadway of coal mine and have achieved good results. The research has important reference value for soft rock roadway supporting technology and its stability maintenance.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Bangyou Jiang ◽  
Lianguo Wang ◽  
Yinlong Lu ◽  
Shitan Gu ◽  
Xiaokang Sun

This paper presented a case study of the failure mechanisms and support design for deep composite soft rock roadway in the Yangcheng Coal Mine of China. Many experiments and field tests were performed to reveal the failure mechanisms of the roadway. It was found that the surrounding rock of the roadway was HJS complex soft rock that was characterized by poor rock quality, widespread development of joint fissures, and an unstable creep property. The major horizontal stress, which was almost perpendicular to the roadway, was 1.59 times larger than the vertical stress. The weak surrounding rock and high tectonic stress were the main internal causes of roadway instabilities, and the inadequate support was the external cause. Based on the failure mechanism, a new support design was proposed that consisted of bolting, cable, metal mesh, shotcrete, and grouting. A field experiment using the new design was performed in a roadway section approximately 100 m long. Detailed deformation monitoring was conducted in the experimental roadway sections and sections of the previous roadway. The monitoring results showed that deformations of the roadway with the new support design were reduced by 85–90% compared with those of the old design. This successful case provides an important reference for similar soft rock roadway projects.


Sign in / Sign up

Export Citation Format

Share Document