anchor cable
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 85)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 129
Author(s):  
Weizheng Liu ◽  
Tianxiong Li ◽  
Jiale Wan

A complete case record of a deep foundation pit with pile-anchor retaining structure excavated in red sandstone stratum is presented in this study. The horizontal displacement of pile top, the horizontal displacement at various depths, the axial force of anchor cable, and ground settlement during construction are measured. A three-dimensional numerical model is established to analyze the additional stress and deformation induced by the excavation and the accuracy of the FEM model is verified by comparing with field measured results. Both the measured and numerical simulation results show that the deformation of the pile-anchor supported deep excavation is significantly affected by the spatial effect. The results show that the deformation in the middle of the foundation pit is greater than the pit angle and that the deformation of the long side is greater than that of the short side and gradually decreases from the middle to the pit angle. The deformation and stress in the middle of the long side of the foundation pit are the largest, which is the most unfavorable part. With the increase of vertical excavation depth, the spatial effects tend to increase, and the influence scope of spatial effects is about five times the vertical excavation depth in the red sandstone stratum. The ground settlement outside the pit is mainly distributed in a groove shape, and the maximum settlement occurs about 8.5 m away from the pit edge. Finally, parametric studies of reinforcement parameters indicated that 1.5–2.0 times the initial elastic modulus and cohesive force of soil should be used for reinforcement. It is recommended that the ranges for pile diameter, pile spacing, anchor cable prestressing and inclination angle should be selected as 0.8–1.2 m, 1.4–2.0 m, 100–150 kN, and 10°–20°, respectively.


Author(s):  
K Klaka

The loads exerted on an all-chain anchor cable of a 10m yacht were measured during full scale trials in sheltered waters and steady wind. The peak recorded load was found to decrease significantly with increasing scope ratio, whereas the mean load was only weakly affected by scope ratio. The trials results were used to calculate the depth of water in which the pull at the anchor just remains horizontal for a range of wind speeds and cable lengths. The resulting relationship between maximum water depth and cable length is approximately quadratic. The required scope ratio for a given water depth increases with increasing windspeed. The required scope ratio for a given windspeed decreases with increasing depth.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kang Wang ◽  
Xinglong Huang ◽  
Haibo Li ◽  
Feng Zhang ◽  
Jiazhen Li ◽  
...  

The evolution process of the surrounding rock failure mechanism is studied because of spalling and roof fall accidents at the top corner of longwall top coal caving faces affected by mining and the difficulty of moving the advanced end support. Methods are proposed to improve the stability of surrounding rocks at the top corner of the end including cutting at the top corner of the end, reinforcing the anchor cable, changing the stress distribution of surrounding rocks at the top corner of the end, and transferring the stress concentration area of surrounding rocks to the deeper rock. Field observations of the surrounding rocks at the top corner of the 15107 fully mechanized caving face show that the stress value of the surrounding rocks at the corner between the roof of the return airway and the coal wall of the working face is 28.9 MPa when the surrounding rocks are in a stable state without mining. The stress value of surrounding rocks at the top corner of the end is 32.3 MPa when it is affected by mining, which results in spalling and roof fall. The surrounding rocks are in a stable state when the maximum stress of the surrounding rocks at the top corner of the reinforced anchor cable’s back-end is 26.1 MPa. The results show that cutting of the surrounding rocks at the top corner of the end and the reinforcement of the anchor cable can avoid the spalling and roof fall when the top corner of the end is affected by mining and can ensure that the end support advances and working face moves forward.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuhe Gao ◽  
Weiping Tian ◽  
Jiachun Li ◽  
Hongliang Qi ◽  
Zhipei Zhang

The establishment of the prestressed cable loss prediction model is a difficult problem faced by the popularization and use. This article aims at the problem of the loss of anchor cable prestress over time in the soil-rock dual-structure slope. We relied on the soil-rock dual-structure slope treatment project of section K5 + 220-K5 + 770 of Jiangwen Expressway and monitored the prestress loss of the anchor cable in the slope through the anchor cable meter with built-in vibrating wire sensor. Using regression analysis and segmented modelling methods, we established a comprehensive mathematical improvement model, analyzed the applicability of the improved model, and obtained the error range, 0.04%–8.9%. This work offers a new approach for predicting anchor cable prestress loss, which has certain practical value for the use of prestressed anchor cables.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Renliang Shan ◽  
Shupeng Zhang ◽  
Shengchao Xiao ◽  
Junqi Liang

In roadways with high ground stress or burial depths, the joints distributed within rock formations are subject to complex stresses and interlayer misalignments frequently. Rock bolts and cable bolts anchored in the rock formations are subject to tensile and shear forces. Most of the bolts used in roadway engineering are local anchored, resulting in insufficient shear strength at the bolt free end close to roadway surface and increasing bolts breaking. The anchor cable and C-shaped tube (ACC) is a highly prestressed cable bolt that can withstand high shear force in its free end. This paper examines the effect of the relationship between C-shaped tube length and joint location on the shear resistance of ACC by double shear tests. To fully exploit the ACC’s shear resistance, the C-shaped tube ends should be at least 30 cm beyond the joint. The effect of preload and concrete spray thicknesses on roadway deformation and plastic zone is investigated by numerical simulation. Results show that ACC and concrete spraying layer can form a stable extruded arch structure, so that the broken and soft rock within the loosen zone is in three-dimensional-stress state, effectively improving surrounding rock properties and controlling its deformation size. Based on these results, the ACC support design method is proposed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Danfeng Li ◽  
Zhuojie Zhang

In view of the fact that the anti sliding effect analysis of the current anchor cable and anti slide pile structure is not yet complete, research on the synergy mechanism of adjacent pile-anchor composite structures under traffic load is carried out. Firstly, a free vibration analysis for the slope dynamic model is carried out by using a three-dimensional finite element numerical simulation method. By improving the slope boundary conditions of time-domain analysis, the time-domain equation of the dynamic model of traffic load acting on the top of the slope is solved accurately, and the response law of the internal force of the pile anchor composite structure is also described. The mechanism by which the pile anchor composite structure resists against the slope sliding through the internal force increment is proposed: this internal force increment is estimated to be 73.4%, while that of anchor cable is 26.6%. The composite structure presents the coordinated sharing for sliding force. The internal force of the lower row of anchor cables is 89.48 kN larger than that of the upper row, and the internal force increment is four times larger, indicating that the lower anchor cable is more effective in slope reinforcement. As the deformation at the top of the slope is greater, the prestress of the upper anchor cable should be increased to avoid the “chain failure” caused by excessive deformation. As a result, the coordination law of internal force of pile anchor is revealed, and the anti sliding sharing mechanism is clarified. A design idea of the adjacent pile-anchor composite structure is proposed, which takes 0.2‐0.3 times the remaining sliding force as the design value of prestressed anchor cable. The idea fully considers the anti sliding effect of prestressed anchor cables and reduces the design size of anti slide pile section, providing a theoretical support for optimization design of combined anti slide structure and saving project investment.


Author(s):  
I. S. Penshin

Possibilities of synthesis of various laws of distribution of the tension force of cables in the modules of the anchor-cable mover are considered. The analysis of the features of several variants of the distribution of tensile forces is carried out.


Sign in / Sign up

Export Citation Format

Share Document