Reverse Atom Transfer Radical Polymerization of N-Vinylpyrrolidone in Bulk Catalyzed by AIBN)/FeCl3/ PPh3

2013 ◽  
Vol 295-298 ◽  
pp. 3-7
Author(s):  
Guo Bin Yi ◽  
Ying Wu ◽  
Ping Ke Ai

The reverse atom transfer radical polymerization (RATRP) of N-vinylpyrrolidone (NVP) using azobisisobutyronitrile (AIBN)/FeCl3/triphenylphosphine(PPh3) as the initiating system, was successfully carried out in bulk at 80°C. Plots of In ([M]0/[M]) vs time and molecular weight evolution vs monomer conversion presented a linear dependence and the polymerization was proved to accord with the first-order kinetics. After 10 hours’ reaction, the monomer conversion was up to 84%. Gel permeation chromatography (GPC) was used in testing the molecular weight of polymer and molecular weight distribution, the results showed that polymer molecular weight distribution was as low as 1.018 (Mn=3288 g/mol). Moreover, the resultant polymer was characterized by 1H-NMR, 13C-NMR spectroscopy and Pyrolysis GC-MS, and the results showed that the polymerization mechanism is consistent with RATRP.

2021 ◽  
Author(s):  
Rongguan Yin ◽  
Zongyu Wang ◽  
Michael R. Bockstaller ◽  
Krzysztof Matyjaszewski

Molecular weight distribution imposes considerable influence on the properties of polymers, making it an important parameter, impacting morphology and structural behavior of polymeric materials.


2018 ◽  
Vol 3 (3) ◽  
pp. 496-508 ◽  
Author(s):  
Haichen Li ◽  
Christopher R. Collins ◽  
Thomas G. Ribelli ◽  
Krzysztof Matyjaszewski ◽  
Geoffrey J. Gordon ◽  
...  

Combination of deep reinforcement learning and atom transfer radical polymerization gives precise in silico control on polymer molecular weight distributions.


2016 ◽  
Vol 18 (6) ◽  
pp. 1475-1481 ◽  
Author(s):  
Yue Liu ◽  
Dashu Chen ◽  
Xingyu Li ◽  
Ziyang Yu ◽  
Qiansu Xia ◽  
...  

A visible light responsive MOF material has been constructed by the pillared-layer approach to conduct atom transfer radical polymerization. The as-prepared polymers show narrow molecular weight distribution and high retention of chain-end activity.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Gang Wang ◽  
Xiulin Zhu ◽  
Cheng Zhengping ◽  
Jian Zhu

AbstractHeterogeneous atom transfer radical polymerization (ATRP) of styrene initiated by 2-bromo-2-nitropropane in bulk was carried out with CuCl/2,2′-bipyridine as the catalyst. The kinetics was first order in monomer and the numberaverage molecular weight of the polymer increased linearly with monomer conversion, indicating the ‘living’/controlled nature of the polymerization. However, the number-average molecular weight was usually higher than the theoretical one. The nitro group might react with the Cu complex, resulting in insufficient initiation. The amount of catalyst has no effect on the controllability of this catalyst system for the ATRP of styrene. The presence of a halide end group in the obtained polymer was confirmed by both 1H NMR and chain-extension reaction.


Sign in / Sign up

Export Citation Format

Share Document