Implementation of Sun Tracking for Solar Cell with Maximum Power Point Tracking

2013 ◽  
Vol 300-301 ◽  
pp. 572-575
Author(s):  
Sheng Chen ◽  
Chih Chen Chen

In this paper, the implement of the solar cell for sun tracking is achieved. The sun energy is abundant with clean and green energy, but the efficiency is not benefit from the source of solar panel to the power conversion output for the practical application. This paper contains the implement starting from driving solar cell with the XY-axis servo motor to trace the optimal input solar light, then the maximum power point tracking circuit (MPPT) in the Boost conversion is included to increase the efficiency for lithium battery charging. The super capacitor banks are paralleled with the lithium battery to improve the inrush power load, which is benefit for prolong the lithium battery and solar panel life; The applications of output are included two parts; one is the small green man of traffic light and the other one is AC 110V urban electric conversion; the control core for this system is PSOC chip for its simple, practical and high efficiency demand.

Author(s):  
Priyank Srivastava ◽  
Pankaj Gupta ◽  
Amarjeet Singh

A photovoltaic cell produces electrical energy directly from visible light. However, their efficiency is fairly low. So, the solar cell costs expensive as compared to other energy resources products. Various factors affect solar cell efficiency. This paper presents the most important factors that affecting efficiency of solar cells. These effects are cell temperature, MPPT (maximum power point tracking) and energy conversion efficiency. The changing of these factors improves solar cell efficiency for more reliable applications. There is a large energy demand due to industrial development and population growth especially in India. The main challenge in replacing conventional energy sources with newer and more environmentally friendly alternatives, such as solar and wind energy, is how to capture the maximum energy and deliver the maximum power at a minimum cost for a given load. The output power of photovoltaic cells or solar panels has nonlinear characteristics and these are also affected by temperature, light intensity and load.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Mohsen Taherbaneh ◽  
A. H. Rezaie ◽  
H. Ghafoorifard ◽  
K. Rahimi ◽  
M. B. Menhaj

In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panelI-Vcurves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.


Sign in / Sign up

Export Citation Format

Share Document