A New Hydraulic Power Steering System for Hybrid City Bus

2013 ◽  
Vol 321-324 ◽  
pp. 1562-1565 ◽  
Author(s):  
Zhen Lin Yang ◽  
Ren Guang Wang ◽  
Lin Tao Zhang ◽  
Chao Yu ◽  
Guang Kui Shi ◽  
...  

A new type power steering system was developed for electric hybrid city bus. It is mainly composed of fluid reservoir, electric motor, steering pump, safety valve, solenoid, pressure sensor, hydraulic cylinder, braking air tank, controller, steering wheel, steering angle sensor, steering control valve, mechanical steering mechanism, steering power cylinder. Its main idea is based on using of pressure from braking air tank to push a cylinder to generate hydraulic pressure. It can provide enough pressure for steering needing timely. And the steering pump does not need working at the time of no steering requirement. The application of a new type power steering system can save energy to improve fuel efficiency.

2014 ◽  
Vol 490-491 ◽  
pp. 1018-1022
Author(s):  
Yong Chen

In order to study operation characteristic of the hydraulic power steering (HPS) system, a data gathering system, based on the testbench, was designed to test HPS system operating on-road. By using various kinds of sensors, such as hydraulic pressure, fluid flow rate, steering torque, corner angle, angular velocity, vehicle speed, gyro sensors and so on, convert steering wheel angle, angular velocity, torque and other operation parameters into analog voltage signals, which provided to real-time data acquisition, storage and analysis. 11 physical quantities can be tested simultaneously, including steering system and operation parameters of vehicles. Different angular velocity of steering wheel speed and "S" shape road were tested on different vehicle speeds, and the result shows that the tests are in accordance with theoretical analysis, which proves the data gathering system's credibility.


Author(s):  
Federico Cheli ◽  
Elisabetta Leo ◽  
Edoardo Sabbioni ◽  
Andrea Zuin

A semi-physical model of an hydraulic power steering system is presented in this paper. The proposed model allows to evaluate the wheels dynamic response to steering inputs and to calculate the corresponding reaction torque on the steering-wheel (steering torque). The analyzed steering system increases its stiffness (so that the steering assist level is decreases) with the rise of the vehicle speed. Thus, vehicle maneuverability is improved during parking maneuvers, while at high vehicle speeds, stability and driver perceived steering feel are ensured. A two d.o.f. (steering-wheel and rack-pinion rotations) model has been implemented during this study. The model parameters have been identified through the standard laboratory tests carried out to characterize a steering system, minimizing the difference between the experimental data and the model numerical results. During laboratory tests the hydraulic power system has been characterized first, measuring its stiffness variation as a function of the relative rotation between the steering-wheel and the rack-pinion, and the steering torque as a function of the difference between the delivery and the reversal pressure of the double-acting ram. The complete steering system has been then characterized, suspending the vehicle and placing the wheels on appropriate low-friction plates which permit them to turn; sine and frequency sweep steering input have been applied by a robot and the corresponding reaction torque on the steering-wheel has been measured. Simulations results are in good agreement with the experimental ones for all the performed tests. The steering system model has been integrated into a 14 d.o.f. vehicle model developed by the Mechanical Department of the Politecnico di Milano in order to access its reliability during handling maneuvers. Several simulations have been performed both in open (step-steer, steering pad, etc.) and in closed loop (lane change, double lane change, slalom, etc). Simulation results have shown a reduction of the toe angle due to the deformability of the steering system and a time delay of the wheel angle respect to the cinematic condition introduced by the steering system dynamics. The reaction torque on the steering-wheel has also been calculated during the simulations to access the driver perceived steering feel during the maneuvers.


2012 ◽  
Vol 482-484 ◽  
pp. 474-477
Author(s):  
Qing Zhu ◽  
Gang Liu ◽  
De Chao Song

The simulation model of full hydraulic power steering system whose key part is full hydraulic power steering unit is established based on AMESim. According to the parameters from one articulated construction vehicle, the dynamic characteristic of the full hydraulic power steering system can be studied. Through the input from steering wheel and external load in different situations, the response curve is obtained, that can provide references for the design of full hydraulic power steering system in articulated construction vehicles.


Author(s):  
Heng Du ◽  
Qingming Zhang ◽  
Shumei Chen ◽  
Jinhui Fang

An accurate electro-hydraulic power steering system (EHPSS) model is essential to analyze dynamic steering performance and advanced nonlinear control. The main obstacle to establish an accurate model is the complex structure, including steering mechanism, valve controlled dual hydraulic-actuator, and heavy duty tires. This paper constructs a suitable model incorporating these parts, based on a Lagrange equation describing the steering trapezoid mechanism and dual cylinder hydraulic dynamics, regarding steering resisting moment as an external load. A simplified tire model is used to represent the tire basic steering load characteristics. Due to the complexity of the kinematic relationship in the model, several expressions are fitted using back propagation neural networks to significantly reduce calculation difficulty. Experimental measurements and simulation using Matlab/Simulink and experiment are realized for the case of in situ steering, and the results validate the proposed model accuracy. Thus, the proposed model is suitable to analyze the system and design advanced controllers.


2014 ◽  
Vol 525 ◽  
pp. 333-336
Author(s):  
Chong Xia Xu ◽  
Jiong Gang Han ◽  
De Jun Feng ◽  
Rong Wei Shen

A kind of recirculating ball-type power steering system for electric power bus was designed. The control strategy of EPS is divided into two layers that are top layer strategy and bottom layer strategy. The assist mode of top layer strategy is researched. The simulation model based MATLAB/Simulation was build and verified by the simulation experiments. The results validate the effectiveness of the proposed strategy, which creates the research basis for further research and development of EPS.


2014 ◽  
Vol 644-650 ◽  
pp. 755-758
Author(s):  
Jie Li ◽  
Jian Tong Song ◽  
Li Hong Wang ◽  
Jv Biao Yao

Conventional hydraulic steering system has the problems of "low-speed heavy, high-speed flight" and energy-wasting when steering, the main reason is after the system is designed, the power characteristics are fixed. To solve this problem it is necessary to achieve the power characteristics of changing power steering system according to speed of vehicles, in order to offer the power that matches the speed. Using vehicle speed sensor signal to control pilot solenoid unloading valve to regulate the pressure of hydraulic system, can achieve the regulation of power characteristics, this article is based on such idea to design variable hydraulic power steering system for hydraulic power steering system of light trucks.


Sign in / Sign up

Export Citation Format

Share Document