operation parameters
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 167)

H-INDEX

31
(FIVE YEARS 6)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Tomislav Senčić ◽  
Vedran Mrzljak ◽  
Vedran Medica-Viola ◽  
Igor Wolf

The scavenging process is an important part of the two-stroke engine operation. Its efficiency affects the global engine performance such as power, fuel consumption, and pollutant emissions. Slow speed marine diesel engines are uniflow scavenged, which implies inlet scavenging ports on the bottom of the liner and an exhaust valve on the top of the cylinder. A CFD model of such an engine process was developed with the OpenFOAM software tools. A 12-degree sector of the mesh was used corresponding to one of the 30 scavenging ports. A mesh sensitivity test was performed, and the cylinder pressure was compared to experimental data for the analyzed part of the process. The scavenging performances were analyzed for real operation parameters. The influence of the scavenge air pressure and inlet ports geometric orientation was analyzed. The scavenging process is analyzed by means of a passive scalar representing fresh air in the cylinder. Isosurfaces that show the concentration of fresh air were presented. The variation of oxygen and carbon dioxide with time and the axial and angular momentum in the cylinder were calculated. Finally, the scavenging performance for the various operation parameters was evaluated by means of scavenging efficiency, charging efficiency, trapping efficiency, and delivery ratio. It was found that the scavenging efficiency decreases with the engine load due to the shorter time for the process. The scavenging efficiency increases with the pressure difference between the exhaust and scavenging port, and the scavenging efficiency decreases with the increase in the angle of the scavenging ports. It was concluded that smaller angles than the industry standard of 20° could be beneficial to the scavenging efficiency. In the investigation, the charging efficiency ranged from 0.91 to over 0.99, the trapping efficiency ranged from 0.54 to 0.83, the charging efficiency ranged from 0.78 to 0.92, and the delivery ratio ranged from 1.21 to 2.03.


2022 ◽  
Vol 131 (1) ◽  
pp. 014501
Author(s):  
J. Glaab ◽  
J. Ruschel ◽  
N. Lobo Ploch ◽  
H. K. Cho ◽  
F. Mehnke ◽  
...  
Keyword(s):  

2022 ◽  
pp. 179-207
Author(s):  
Syed Javaid Zaidi ◽  
Haleema Saleem

2021 ◽  
Vol 8 (6) ◽  
pp. 871-880
Author(s):  
Dmitry Zheldakov ◽  
Radik Mustafin ◽  
Vladimir Kozlov ◽  
Askar Gaysin ◽  
Dmitriy Sinitsin ◽  
...  

This paper aims to develop a method to determine material durability based on physicochemical laws that describe chemical corrosion in building enclosures. The subject of this research is studying the chemical corrosion in the material in building constructions. The object of this research is the material of building ceramics. Methods that the authors used for reaching this goal include developing a multi-staged process of material degradation of building ceramics, conduction of thermodynamic calculations, and conducting laboratory research on process kinetics. The results of kinetic researches are generalized based on a developed mathematical model. This comprehensive approach to solving the goal task allowed obtaining the following results: research methods of chemical processes in brick material and its plaster on humidification were developed. A mathematical model for evaluating material degradation in time with the changing climatic influence on enclosure was developed.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8358
Author(s):  
Grzegorz Trzmiel ◽  
Jaroslaw Jajczyk ◽  
Ewa Kardas-Cinal ◽  
Norbert Chamier-Gliszczynski ◽  
Waldemar Wozniak ◽  
...  

The paper presents an original method underlying an efficient tool for assessing the condition of photovoltaic (PV) modules, in particular, those made of amorphous cells. Significantly random changes in operational parameters characterize amorphous cell operation and cause them to be challenging to test, especially in working conditions. To develop the method, the authors modified the residual method with incorporated histograms. The proposed method has been verified through experiments that show the usefulness of the proposed approach. It significantly minimizes the risk of false diagnostic information in assessing the condition of photovoltaic modules. Based on the proposed methods, the inference results confirm the effectiveness of the concept for evaluating the degree of failure of the photovoltaic module described in the paper.


Sign in / Sign up

Export Citation Format

Share Document