New Approach to Delay-Dependent Stability Analysis and Stabilization for Fuzzy Systems with Time-Varying Delay

2013 ◽  
Vol 389 ◽  
pp. 471-476 ◽  
Author(s):  
Gang Guo ◽  
Su Ping Zhao

A new method is proposed for the delay-dependent stability control of fuzzy systems with time-varying delay. A new fuzzy Lyapunov-Krasovskii functional (LKF) is introduced to establish a delay-dependent stability criterion. Based on parallel distributed compensation (PDC) scheme, a stabilization condition is derived and the corresponding controller can be obtained by solving a set of linear matrix inequalities (LMIs).

2012 ◽  
Vol 516-517 ◽  
pp. 1391-1395
Author(s):  
Ren Bo ◽  
Zhang Guo

This paper is presented a new method for stability analysis and stabilization problems of continuous-time T-S fuzzy systems with time-delay. A fuzzy Lyapunov function is introduced to establish some delay-dependent stability criteria. Less conservative results are obtained by considering the additional useful terms when estimating the upper bound of the derivative of function. Then based on parallel distributed compensation, a delay-dependent stabilization condition is derived and the corresponding controller can be obtained by solving a set of linear matrix inequalities (LMIs).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tiejun Li ◽  
Junkang Tian

This paper is concerned with delay-dependent stability for continuous systems with two additive time-varying delay components. By constructing a new class of Lyapunov functional and using a new convex polyhedron method, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities. The obtained stability criterion is less conservative than some existing ones. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.


2012 ◽  
Vol 461 ◽  
pp. 633-636
Author(s):  
Cheng Wang

The problem of delay-dependent robust stability of uncertain stochastic systems with time-varying delay is discussed in this paper. Based on the Lyapunov-Krasovskii theory and free-weighting matrix technique, new delay-dependent stability criterion is presented. The criterion is in terms of linear matrix inequality (LMI) which can be solved by various available algorithms.


2019 ◽  
Vol 29 (09) ◽  
pp. 2050134 ◽  
Author(s):  
Khadija Naamane ◽  
El Houssaine Tissir

This paper focuses on the problem of delay-dependent stability for nonlinear quadratic Takagi–Sugeno (TS) fuzzy systems with time-varying delay using the input–output approach. The results are based on the model transformation by employing a three-terms approximation of delayed state vector. By applying the scaled small-gain theorem and Lyapunov–Krasovskii functional, the stability criteria is obtained in terms of linear matrix inequalities. Furthermore, the Wirtinger-based integral inequality approach has been employed to derive less conservative results. Finally, the numerical examples are provided to demonstrate the effectiveness of the obtained results and for comparison with previous work.


2013 ◽  
Vol 662 ◽  
pp. 801-806
Author(s):  
Li Li

This paper describes the synthesis of robust and non-fragile state feedback controllers for T-S fuzzy system with time-varying delay in a range and parameter uncertainties. A new method is proposed by de¯ning new Lyapunov functionals and introducing some free-weighting matrices. Impr oved delay-dependent results are presented.


2013 ◽  
Vol 427-429 ◽  
pp. 1306-1310
Author(s):  
Jun Jun Hui ◽  
He Xin Zhang ◽  
Fei Meng ◽  
Xin Zhou

In this paper, we consider the problem of robust delay-dependent stability for a class of linear uncertain systems with interval time-varying delay. By using the directly Lyapunov-Krasovskii (L-K) functional method, integral inequality approach and the free weighting matrix technique, new less conservative stability criteria for the system is formulated in terms of linear matrix inequalities .Numerical examples are given to show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document