A New Approach to Robust and Non-Fragile Control of Uncertain T-S Fuzzy Systems with Interval Time-Delay

2013 ◽  
Vol 662 ◽  
pp. 801-806
Author(s):  
Li Li

This paper describes the synthesis of robust and non-fragile state feedback controllers for T-S fuzzy system with time-varying delay in a range and parameter uncertainties. A new method is proposed by de¯ning new Lyapunov functionals and introducing some free-weighting matrices. Impr oved delay-dependent results are presented.

2013 ◽  
Vol 389 ◽  
pp. 471-476 ◽  
Author(s):  
Gang Guo ◽  
Su Ping Zhao

A new method is proposed for the delay-dependent stability control of fuzzy systems with time-varying delay. A new fuzzy Lyapunov-Krasovskii functional (LKF) is introduced to establish a delay-dependent stability criterion. Based on parallel distributed compensation (PDC) scheme, a stabilization condition is derived and the corresponding controller can be obtained by solving a set of linear matrix inequalities (LMIs).


Author(s):  
R. Sakthivel ◽  
P. Vadivel ◽  
K. Mathiyalagan ◽  
A. Arunkumar

This paper is concerned with the problem of robust reliable H∞ control for a class of uncertain Takagi-Sugeno (TS) fuzzy systems with actuator failures and time-varying delay. The main objective is to design a state feedback reliable H∞ controller such that, for all admissible uncertainties as well as actuator failure cases, the resulting closed-loop system is robustly asymptotically stable with a prescribed H∞ performance level. Based on the Lyapunov-Krasovskii functional (LKF) method together with linear matrix inequality (LMI) technique, a delay dependent sufficient condition is established in terms of LMIs for the existence of robust reliable H∞ controller. When these LMIs are feasible, a robust reliable H∞ controller can be obtained. Finally, two numerical examples with simulation result are utilized to illustrate the applicability and effectiveness of our obtained result.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Le Zhang ◽  
Jinnan Wu

This paper deals with the reliable control problem of nonlinear systems represented by switched fuzzy systems (SFS) with time-varying delay, where each subsystem of switched system is a time-varying delay fuzzy system. A switched fuzzy system with a Takagi and Sugeno (T-S) fuzzy model, which differs from existing ones, is firstly employed to describe a nonlinear system. When the actuators are serious failure, the residual part of actuators cannot make original system stability, using switching technique depends on the states of observers, and the fuzzy reliable controller based on measured observers states instead of the original system states information is built. The stabilization criterion of the reliable control problem is given for the case that the state of original system is unmeasurable. The multi-Lyapunov functions method is utilized to the stability analysis and controller design for time-varying delay switched fuzzy systems with faulty actuators. Moreover, observers switching strategy achieving estimation errors decreasing uniformly asymptotically to zero of the switched fuzzy systems is considered. Finally, the stabilization criterion is transformed into the solvability of sufficient linear matrix inequality (LMI) conditions. To illustrate the effectiveness of the proposed stabilization criterion and controller design approaches, a designed numerical example is studied, and some simulations are provided.


Sign in / Sign up

Export Citation Format

Share Document