Formal Analysis of an Efficient Handover Authentication Scheme for EAP-Based Wireless Networks with Extending BAN Logic

2013 ◽  
Vol 401-403 ◽  
pp. 1864-1867 ◽  
Author(s):  
Li Ling Cao ◽  
Wan Cheng Ge

The existing Extensible Authentication Protocol (EAP) based handover authentication schemes have show robust security features especially the Qi Jing et al.'s design, which not only meets the essential security requirements in handover authentication but also achieves privacy preservation. However, it still suffers pitfalls in the process of authentication. The main idea of this paper is to extend the work by Qi Jing et al. and particularly focus on the formal analysis using extending BAN logic which is more concise yet practical to use on PKI-based protocols.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yongbin Zeng ◽  
Hui Guang ◽  
Guangsong Li

Mobile wireless networks are widely used in our daily lives. Seamless handover occurs frequently and how to guarantee security and efficiency during handover procedure is a major challenge. A handover authentication protocol with nice properties can achieve goals. Protocols proposed in recent years more or less have some security vulnerability. In this paper, we outline security requirements for handover authentication protocols and then propose an anonymous protocol based on a new attribute-based signature scheme. The proposed protocol realizes conditional privacy preserving, user revocation, and session key update as well as mutual authentication and anonymity. Besides, it achieves fine-grained access control due to attributes representing real identity. What is more, experiment shows the proposed protocol has a superior performance.


Author(s):  
Gregor V. Bochmann ◽  
Eric Zhen Zhang

The requirements for an authentication infrastructure for electronic commerce are explained by identifying the partners involved in e-commerce transactions and the trust relationships required. Related security requirements are also explained, such as authentication, access rights, payment credentials, anonymity (in certain cases), and privacy and integrity of message exchanges. Then several general authentication schemes and specific protocols are reviewed and their suitability for mobile users is discussed. Finally, an improved authentication protocol is presented which can provide trust relationships for mobile e-commerce users. Its analysis and comparison with other proposed authentication protocols indicate that it is a good candidate for use in the context of mobile e-commerce.


2008 ◽  
pp. 3765-3783
Author(s):  
Gregor V. Bochmann ◽  
Eric Zhen Zhang

The requirements for an authentication infrastructure for electronic commerce are explained by identifying the partners involved in e-commerce transactions and the trust relationships required. Related security requirements are also explained, such as authentication, access rights, payment credentials, anonymity (in certain cases), and privacy and integrity of message exchanges. Then several general authentication schemes and specific protocols are reviewed and their suitability for mobile users is discussed. Finally, an improved authentication protocol is presented which can provide trust relationships for mobile e-commerce users. Its analysis and comparison with other proposed authentication protocols indicate that it is a good candidate for use in the context of mobile e-commerce.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Cheng Xu ◽  
Xiaohong Huang ◽  
Maode Ma ◽  
Hong Bao

Vehicular networks play an important role in the intelligent transportation systems which have gained technical supports from car industry. Due to the mobility and the broadcast nature of wireless communication, security of the vehicular networks is a critical issue for the academia and industry. Many solutions have been proposed to target the security provisioning. However, most of them have various shortcomings. Based on the elliptic curve public key cryptography algorithm, in this paper, we propose a new anonymous roaming authentication protocol for the Long Term Evolution-Advanced (LTE-A) supported vehicular networks. For a vehicular LTE-A network, an authentication protocol should be able to fulfill a variety of security requirements, which can be met by our proposal and proved by using Burrows–Abadi–Needham (BAN) logic. Compared with some existing solutions, our scheme has lower communication costs with stronger security functionality. The analyses on the security functions and the performance of the proposed solution show that our scheme is secure and efficient with ability against various types of malicious attacks.


Sign in / Sign up

Export Citation Format

Share Document