Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms

2013 ◽  
Vol 418 ◽  
pp. 15-19 ◽  
Author(s):  
Min Huang ◽  
Ping Ding ◽  
Jiao Xue Huan

Global optimal path planning is always an important issue in mobile robot navigation. To avoid the limitation of local optimum and accelerate the convergence of the algorithm, a new robot global optimal path planning method is proposed in the paper. It adopts a new transition probability function which combines with the angle factor function and visibility function, and at the same time, sets penalty function by a new pheromone updating model to improve the accuracy of the route searching. The results of computer emulating experiments prove that the method presented is correct and effective, and it is better than the genetic algorithm and traditional ant colony algorithm for global path planning problem.

2018 ◽  
Vol 232 ◽  
pp. 03052 ◽  
Author(s):  
Chengwei He ◽  
Jian Mao

Using the traditional Ant Colony Algorithm for AGV path planning is easy to fall into the local optimal solution and lacking the capability of obstacle avoidance in the complex storage environment. In this paper, by constructing the MAKLINK undirected network routes and the heuristic function is optimized in the Ant Colony Algorithm, then the AGV path reaches the global optimal path and has the ability to avoid obstacles. According to research, the improved Ant Colony Algorithm proposed in this paper is superior to the traditional Ant Colony Algorithm in terms of convergence speed and the distance of optimal path planning.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1880 ◽  
Author(s):  
Fatin Hassan Ajeil ◽  
Ibraheem Kasim Ibraheem ◽  
Ahmad Taher Azar ◽  
Amjad J. Humaidi

Planning an optimal path for a mobile robot is a complicated problem as it allows the mobile robots to navigate autonomously by following the safest and shortest path between starting and goal points. The present work deals with the design of intelligent path planning algorithms for a mobile robot in static and dynamic environments based on swarm intelligence optimization. A modification based on the age of the ant is introduced to standard ant colony optimization, called aging-based ant colony optimization (ABACO). The ABACO was implemented in association with grid-based modeling for the static and dynamic environments to solve the path planning problem. The simulations are run in the MATLAB environment to test the validity of the proposed algorithms. Simulations showed that the proposed path planning algorithms result in superior performance by finding the shortest and the most free-collision path under various static and dynamic scenarios. Furthermore, the superiority of the proposed algorithms was proved through comparisons with other traditional path planning algorithms with different static environments.


Sign in / Sign up

Export Citation Format

Share Document