A License Plate Recognition Method Based on Wavelet Transform and Symmetrical Principal Component Analysis Algorithm

2013 ◽  
Vol 427-429 ◽  
pp. 1743-1746
Author(s):  
Xue Feng Deng

In the past, the license plate recognition algorithm has some shortcomings, such as low recognition rate, slow speed of recognition, inaccurate license plate positioning. This paper proposes a new license plate location algorithm based on wavelet transform and the principal component analysis algorithm is used to feature extraction.The experimental results show that this method can reduce the amount of computation and improve the system recognition rate.

Author(s):  
Zhongli Wang ◽  
Xiping Ma ◽  
Wenlin Huang

With the improvement of our country’s economic level and quality of life, the numbers and scales of highway networks and motor vehicles are constantly expanding, which makes the current road traffic burden more and more serious. As an important means of traffic automation management, license plate recognition (LPR) technology plays an important role in traffic surveillance and control. However, the recognition rate and accuracy of the traditional license plate recognition methods still need to be improved. In the case of poor surrounding environment, it is prone to localization failure, vehicle license plate recognition errors or unrecognizable phenomena. Wavelet transform, as another landmark signal processing method after Fourier transform, has been widely used in the field of image processing. In China, the number of horizontal lines is usually larger than that of vertical lines. If the two vertical boundaries of the license plate can be detected successfully, the four angles of the license plate can be determined efficiently to complete the license plate positioning. In view of the advantages of wavelet transform technology and the characteristics of vehicle license plate, in this paper, a vehicle license plate recognition algorithm based on wavelet transform and vertical edge matching is proposed. The edge of the license plate is detected by wavelet transform technology, and then the license plate is located by vertical edge matching technology. After the location is realized, the characters are segmented by vertical projection method and the characters are recognized by improved BP neural network algorithm. The experimental results show that the proposed vehicle license plate recognition algorithm based on wavelet transform and vertical edge matching performs well in algorithm performance, which provides a good reference for the development of vehicle license plate recognition system.


Optik ◽  
2016 ◽  
Vol 127 (9) ◽  
pp. 3935-3944 ◽  
Author(s):  
Lingjun Li ◽  
Shigang Liu ◽  
Yali Peng ◽  
Zengguo Sun

Face recognition accuracy is determined by face detection results. Detected faces will be in view of clear and occlusion faces. If detected face has occlusion than recognition accuracy is reduced. This research is directed to increase recognition rate when detected occlusion face. In this paper is proposed normalization occlusion faces by Principal component analysis algorithm. After applying normalization method in occlusion faces false reject error rate is decreased.


Sign in / Sign up

Export Citation Format

Share Document