Analysis of High-Speed Railway Roadbed Deformation in Seasonally Frozen Region

2014 ◽  
Vol 505-506 ◽  
pp. 121-124
Author(s):  
Yu Zhi Zhang ◽  
Yan Liang Du ◽  
Bao Chen Sun ◽  
Geng Jie Hao

Take the roadbed in seasonally frozen region of Harbin-Dalian high-speed railway (HSR) as an example,a finite element analysis model was built to study the deformation of roadbed during the freezing and thawing cycles. The analysis model and results were put forward. The results can provide some suggestions for the railway maintenance.

2012 ◽  
Vol 204-208 ◽  
pp. 1740-1743 ◽  
Author(s):  
Gang Qiang Shi ◽  
Yu Zhi Zhang ◽  
Shi Yun Zhao ◽  
Lu Xin Zhang ◽  
Bao Chen Sun

Relying on the roadbed in seasonally frozen region of Harbin-Dalian passenger dedicated line,a finite element analysis model was built to study the changing rules of roadbed settlement in construction and operation. The analog and actual results were in good consistence, the model is suitable for the roadbed deformation analysis of high-speed railway in seasonally frozen regions.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Author(s):  
Dinesh Shinde ◽  
Mukesh Bulsara ◽  
Jeet Patil

Brake friction lining material is the critical element of a braking system, since it provides friction resistance to the rotating drum for controlling automobiles. The present study involves wear analysis of newly developed eco-friendly non-asbestos friction lining material for automotive drum brake applications using experimental study, finite-element analysis, and microstructural investigations. Theoretical interpretation of braking force at different automobile speeds was derived using fundamentals. Specimen drum brake liner with eco-friendly material compositions was produced using an industrial hot compression molding process at one of the manufacturer. The surface wear of the liner was measured using an effective and accurate method. Furthermore, a finite-element analysis model was developed considering actual operating conditions and various components of the drum brake system. The model was elaborated for various result outcomes, including Von-Mises stresses and total deformation of components of the drum brake, and further used to estimate the surface wear of the friction lining material in terms of transverse directional deformation. Finally, microstructural analysis of the friction lining material was carried out using scanning electron microscopy and energy dispersive spectroscopy. From the results, it is seen that the developed friction lining material is wear resistant. The finite-element analysis model can be effectively utilized to study the tribological characteristics of friction lining materials.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


Spine ◽  
2020 ◽  
Vol 45 (16) ◽  
pp. E978-E988
Author(s):  
Deepak Gupta ◽  
Mohd Zubair ◽  
Sanjeev Lalwani ◽  
Shiva Gamanagatti ◽  
Tara Sankar Roy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document