Arm Effect on Performance of Vertical Axis Current Turbine Using RANS Simulation

2014 ◽  
Vol 554 ◽  
pp. 531-535
Author(s):  
Fatemeh Behrouzi ◽  
Adi Maimun Abdul Malik ◽  
Mehdi Nakisa ◽  
Yasser Mohamed Ahmed

Climate changing, electrical demands, rising diesel fuel prices, as well as fossil fuel-based energy is limited and in fact is depleting ,are subjects to use of renewable technologies. Among the different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines.CFD simulation using two equations turbulence model was carried out to compare performance of conventional savonius turnine and new consept of vertical axis turbine. This study was coducted to reach suitable desigh of vertical axis turbines for capturing more kineticenergy of current via of others esspecially,low current speed.

2012 ◽  
Vol 8 ◽  
pp. 29-33
Author(s):  
Govind Raj Pokharel ◽  
Arjun Bahadur Chettri

Large-scale promotion of small scale decentralized renewable energy technologies to achieve a part of millennium development goal remained a great challenge until recently. However, a properly implementation of a public private partnership applied in biogas sector in Nepal has shown that scaling up of small scale renewable energy technologies is feasible if a multi-stakeholder sector development approach and favorable policy as well as modality is adopted. Nepal’s biogas program has been instrumental in helping to achieve some of the Millennium Development Goals (MDGs) by creating economic and social development opportunities in a sustainable way. Such model could also be widely replicated in any other renewable energy technologies and other continent of the world. DOI: http://dx.doi.org/10.3126/hn.v8i0.4908Hydro Nepal: Journal of Water, Energy and Environment Issue No. 8, 2011 JanuaryPage: 29-33Uploaded date: 17 June, 2011


Author(s):  
Sampsa Hyysalo ◽  
Jouni K. Juntunen

There have been many attempts to include citizens as more active players in the proliferation of renewable energy technologies. However, the roles that citizen users play in renewables proliferation are not limited to adoption, but include technological domestication, innovation, and market creation. This chapter first reviews innovation by citizen users in the early phases of small-scale renewable energy technologies (S-RET) technology development in wind turbines, solar collectors, and low-energy housing. It then examines user innovation and peer assistance in the later phases of diffusion in air-source and ground-source heat pumps, pellet-burning systems, and solar collectors. It reviews research user motivations, diffusion pathways, and peer intermediation, and pays particular attention to how the forms of innovative citizen energy communities are changing from locality-based community energy initiatives to distributed and Internet-mediated energy communities. The chapter concludes by drawing policy implications regarding user innovation and peer assistance in the transformation of energy systems.


1998 ◽  
Vol 27 (2) ◽  
pp. 129-132
Author(s):  
Bobboi Umar

Renewable energies have great potential to improve agricultural activities and rural development. Positive results are already being achieved with these relatively benign energies in many countries. In Nigeria, there is need to improve agricultural production for the increasing population and to conserve the fossil fuel reserves. Although renewable energy sources such as solar radiation and biomass are abundant, harnessing them for agricultural and rural development needs is very slow. This article extols the virtues of these energy sources, analyses the progress made so far in renewable energy technologies in Nigeria, identifies the major obstacles and suggests some solutions to overcome them.


2014 ◽  
Vol 22 (2) ◽  
pp. 44-54 ◽  
Author(s):  
Markus Seiwald

Abstract The successful diffusion of sustainable technologies is termed “upscaling” in the transition studies literature. This paper maintains that upscaling is an ambiguous notion that suggests that technology diffusion processes follow a linear trend from small-scale pilot plants to industrial-scale facilities. On the ground, however, socio-technical configurations are implemented at a variety of scales, simultaneously. These issues are demonstrated in this paper by analysing the historical development of the Austrian biomass district heating niche. Drawing on secondary statistical data and primary qualitative semi-structured interviews, it is possible to identify four generic socio-technical configurations or dominant designs that, in conjunction, shape the diffusion dynamics of this technology in Austria


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Baraka Kichonge ◽  
Iddi S. N. Mkilaha ◽  
Geoffrey R. John ◽  
Sameer Hameer

The study analyzes the economics of renewable energy sources into electricity generation in Tanzania. Business as usual (BAU) scenario and renewable energy (RE) scenario which enforce a mandatory penetration of renewable energy sources shares into electricity generations were analyzed. The results show total investment cost for the BAU scenario is much lower as compared to RE scenario while operating and maintenance variable costs are higher in BAU scenario. Primary energy supply in BAU scenario is higher tied with less investment costs as compared to RE scenario. Furthermore, the share of renewable energy sources in BAU scenario is insignificant as compared to RE scenario due to mandatory penetration policy imposed. Analysis concludes that there are much higher investments costs in RE scenario accompanied with less operating and variable costs and lower primary energy supply. Sensitivity analysis carried out suggests that regardless of changes in investments cost of coal and CCGT power plants, the penetration of renewable energy technologies was still insignificant. Notwithstanding the weaknesses of renewable energy technologies in terms of the associated higher investments costs, an interesting result is that it is possible to meet future electricity demand based on domestic resources including renewables.


Author(s):  
Ye Li ◽  
Sander M. Calisal

Tidal power technology has been dwarfed once to take hold in the late 1970’s, because the early generations were expensive at small scale and some applications (such as barrages) had negative environmental impacts. In a similar working manner as a wind turbine, a tidal current turbine has been recognized as a promising ocean energy conversion device in the past two decades. However, the industrialization process is still slow. One of the important reasons is lack of comprehensive turbine hydrodynamics analysis which can not only predict turbine power but also assess impacts on the surrounding areas. Although a lot can be learned from the marine propeller or the wind turbine studies, a systematic hydrodynamics analysis on a vertical axis tidal current turbine has not been reported yet. In this paper, we employed vortex method to calculate the performance of stand-alone vertical axis tidal turbine in term of power efficiency, torque and forces. This method focuses on power prediction, hydrodynamics analysis and design, which can provide information for turbines distribution planning in a turbine farm and other related studies, which are presented in Li and Calisal (2007), a companion paper in the conference. In this method, discrete vortex method is the core for numerical calculation. Free vortex wake structure, nascent vortex and vortex decay mechanism are discussed in detail. Good agreements in turbine efficiency comparison are obtained with both the newly-designed tidal turbine test in a towing tank and early wind turbine test.


Sign in / Sign up

Export Citation Format

Share Document