Preliminary Results of a Vortex Method for Stand-Alone Vertical Axis Marine Current Turbine

Author(s):  
Ye Li ◽  
Sander M. Calisal

Tidal power technology has been dwarfed once to take hold in the late 1970’s, because the early generations were expensive at small scale and some applications (such as barrages) had negative environmental impacts. In a similar working manner as a wind turbine, a tidal current turbine has been recognized as a promising ocean energy conversion device in the past two decades. However, the industrialization process is still slow. One of the important reasons is lack of comprehensive turbine hydrodynamics analysis which can not only predict turbine power but also assess impacts on the surrounding areas. Although a lot can be learned from the marine propeller or the wind turbine studies, a systematic hydrodynamics analysis on a vertical axis tidal current turbine has not been reported yet. In this paper, we employed vortex method to calculate the performance of stand-alone vertical axis tidal turbine in term of power efficiency, torque and forces. This method focuses on power prediction, hydrodynamics analysis and design, which can provide information for turbines distribution planning in a turbine farm and other related studies, which are presented in Li and Calisal (2007), a companion paper in the conference. In this method, discrete vortex method is the core for numerical calculation. Free vortex wake structure, nascent vortex and vortex decay mechanism are discussed in detail. Good agreements in turbine efficiency comparison are obtained with both the newly-designed tidal turbine test in a towing tank and early wind turbine test.

Author(s):  
Ye Li ◽  
Sander M. Çalışal

This paper advanced our recent effort (Li and Çalışal, 2007, “Preliminary Result of a Discrete Vortex Method for Individual Marine Current Turbine,” The 26th ASME International Conference on Offshore Mechanics and Arctic Engineering, Jun. 10–15, San Diego, CA) to study the behavior of tidal-current turbines. We propose a discrete-vortex method with free-wake structure (DVM-UBC) to describe the behavior of a stand-alone tidal-current turbine and its surrounding unsteady flow and develop a numerical model to predict the performance and wake structure of the turbine based on DVM-UBC. To validate this method, we conducted a series of towing tank tests. DVM-UBC is then validated with several kinematic and dynamic results. When we compared the results obtained with DVM-UBC with our towing tank test results, published results, and the results obtained with other numerical methods, we achieved good agreements. Our comparisons also suggested that DVM-UBC can predict the performance of a turbine 50% more accurately than the traditional discrete-vortex method (traditional DVM) with comparable computational effort and will produce results comparable to the Reynolds averaged Navier–Stokes equation with much less computational effort.


Author(s):  
Jun Leng ◽  
Ye Li

In recent years, tidal current energy has gained wide attention for its abundant resource and environmentally friendly production. This study focuses on analyzing dynamic behavior of a three-bladed vertical axis tidal current turbine. The multibody dynamics code MBDyn is used in the numerical simulation. It performs the integrated simulation and analysis of nonlinear mechanical, aeroelastic, hydraulic and control problems by numerical integration. In this study, tidal current turbine is idealized as an assembly of flexible beams including axis of rotation, arms and blades. We firstly conduct a modal analysis on the tidal current turbine and validate the model with the results obtained by ANSYS. The natural frequencies of blades with different size parameters are compared and the corresponding mode shapes are presented. Next, a parametric study was performed to investigate the effect of internal force on the dynamic response. It is concluded that the proposed method is accurate and efficient for structural analysis of tidal current turbine and this flexible multibody model can be used in the fluid-structure-interaction analysis in the future.


2020 ◽  
Vol 210 ◽  
pp. 107320 ◽  
Author(s):  
Wang Hua-Ming ◽  
Qu Xiao-Kun ◽  
Chen Lin ◽  
Tu Lu-Qiong ◽  
Wu Qiao-Rui

Author(s):  
Gunjit S. Bir ◽  
Michael J. Lawson ◽  
Ye Li

This paper describes the structural design of a tidal turbine composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.


2018 ◽  
Vol 79 ◽  
pp. 113-122 ◽  
Author(s):  
Yanbo Ma ◽  
Wei Haur Lam ◽  
Yonggang Cui ◽  
Tianming Zhang ◽  
Jinxin Jiang ◽  
...  

2018 ◽  
Vol 12 (1) ◽  
pp. 3399-3409 ◽  
Author(s):  
Dendy Satrio ◽  
◽  
I Ketut Aria Pria Utama ◽  
Mukhtasor M ◽  
◽  
...  

2015 ◽  
Vol 30 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Wei Guo ◽  
Hai-gui Kang ◽  
Bing Chen ◽  
Yu Xie ◽  
Yin Wang

Sign in / Sign up

Export Citation Format

Share Document