Correlation between Third Harmonic Leakage Current and Thermography Image of Zinc Oxide Surge Arrester for Fault Monitoring Using Artificial Neural Network

2014 ◽  
Vol 554 ◽  
pp. 598-602 ◽  
Author(s):  
Yusuf Novizon ◽  
Abdul Malek Zulkurnain ◽  
Abdul Malek Zulkurnain

The ageing level of ZnO materials in gapless surge arresters can be determined by using either the traditional leakage current measurements or recently introduced thermal images of the arrester. However, a direct correlation between arrester thermal images and its leakage current (and hence the ageing level) is yet to be established. This paper attempts to find such a correlation using an artificial neural network (ANN). Experimental work was carried out to capture both the thermal images and leakage current of 120kV rated polymeric housed gapless arresters. Critical parameters were then extracted from both the thermal image and the leakage current, before being exported into the artificial neural network tool. Using the leakage current level, the conditions of the arrester are classified as normal, caution, and faulty. The ANN correctly classifies the ageing level using only the thermal image information with an accuracy of 97%, which is highly encouraging.

Author(s):  
Novizon Novizon ◽  
Zulkurnain Abdul-Malek ◽  
Aulia Aulia

<p>Manual analysis of thermal image for detecting defects and classifying of condition of surge arrester take a long time. Artificial neural network is good tool for predict and classify data. This study applied neural network for classify the degree of degradation of surge arrester. Thermal image as input of neural network was segmented using Otsu’s segmentation and histogram method to get features of thermal image. Leakage current as a target of supervise neural network was extracted and applied Fast Fourier Transform to get third harmonic of resistive leakage current. The classification results meet satisfaction with error about 3%.</p>


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document