Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network

2014 ◽  
Vol 573 ◽  
pp. 661-667 ◽  
Author(s):  
G.S. Naganathan ◽  
C.K. Babulal

With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural Network (FFNN) approach for the assessment of power system voltage stability. This paper uses some input feature sets using real power, reactive power, voltage magnitude and phase angle to train the neural network (NN). The target output for each input pattern is obtained by computing the distance to voltage collapse from the current system operating point using a continuation power flow type algorithm. This paper compared different input feature sets and showed that reactive power and the phase angle are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. The proposed method has been applied to the IEEE 14 and IEEE 30 bus test system. The continuation power flow technique run with PSAT and the proposed method is implemented in MATLAB.

2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


Sign in / Sign up

Export Citation Format

Share Document