A Comparative Study of the Shear Strength Prediction for Reinforced Concrete Beams without Shear Reinforcement

2014 ◽  
Vol 584-586 ◽  
pp. 1135-1140
Author(s):  
Leandro Mouta Trautwein ◽  
Luiz Carlos de Almeida ◽  
Ricardo Gaspar

This paper focuses on the assessment of the shear strength prediction established in the brazilian concrete code, NBR6118/2007[1], for reinforced concrete beams without web reinforcement. The values obtained by using the brazilian code equation are compared with a significant number of available experimental data and with those predicted by the expressions of other national and international codes, such as CEB-FIP MC90[2] and ACI-318/11[3]. The brazilian concrete code regarding shear capacity of reinforced concrete elements are explicitly assumed to be valid only for concrete strengths up to 50 MPa. It is shown that the code equation may be unconservative in a large number of cases. This discrepancy increases with increasing concrete strength, decreasing longitudinal reinforcement ratio and increasing beam depth.

Shear behavior of reinforced concrete beams (RCbeams) is proved to be influenced by different parameters such as web reinforcement, beam size, shear span-to-depth ratio, concrete strength, and longitudinal reinforcement. In addition to these parameters, researches acknowledge the significant contribution of side-face reinforcement (SFR) in shear strength of RC-beams. This paper aims at proposing a new model for predicting shear strength of RC-beams that accounts for the contribution of SFR in shear strength along with the other above-mentioned parameters. An explicit formula is derived based on a mechanical conceptual model that considers the variation of the inclination angle of diagonal shear cracking. The derived formula is verified on the basis of numerical analysis results in addition to the available results from relevant experimental researches in literature. Reliability of the proposed formula is investigated compared to design provisions in different codes. Results demonstrates that the proposed formula is more capable of predicting shear strength of RC-beams provided with SFR rather than shear design codes. Consistency of the proposed formula in predicting shear strength implies that the mechanical concept, on which the proposed formula is derived, is in consistent with the actual mechanical behavior.


2006 ◽  
Vol 33 (2) ◽  
pp. 161-168 ◽  
Author(s):  
M T Kazemi ◽  
V Broujerdian

A new expression for the shear capacity of reinforced concrete beams without stirrups was derived by calculating the aggregate interlock capacity across the major diagonal crack of the beam, a procedure somewhat similar to those based on the modified compression field theory. Two formulas were obtained from the simplification of this expression. All three relations capture the dependence of shear strength on the size of the beam, the ratio of shear span to beam depth, longitudinal reinforcement ratio, maximum aggregate size, and concrete strength. The limits of these formulas agree well with the limit solutions of shear failure load for very small and very large beams based on plastic and fracture mechanics solutions, respectively. The proposed relations were calibrated by least-squares fitting of the existing experimental database (consisting of 398 data points) and resulted in low coefficients of variation. The simplest version is suitable for design codes.Key words: reinforced concrete, shear strength, beams, aggregate interlock, crack opening, size effect.


2019 ◽  
Vol 22 (14) ◽  
pp. 2998-3010 ◽  
Author(s):  
Zhao-Hui Lu ◽  
Hai Li ◽  
Wengui Li ◽  
Yan-Gang Zhao ◽  
Zhuo Tang ◽  
...  

Reinforcement corrosion exhibits an adverse effect on the shear strength of reinforced concrete structures. In order to investigate the effects of chloride-induced corrosion of reinforcing steel on the shear behavior and failure pattern of reinforced concrete beams, a total of 24 reinforced concrete beams with different concrete strength grades and arrangements of stirrups were fabricated, among which 22 beams were subjected to accelerated corrosion to achieve different degrees of reinforcement corrosion. The failure pattern, crack propagation, load–displacement response, and ultimate strength of these beams were investigated under a standard four-point loading test in this study. Extensive comparative analysis was conducted to investigate the effects of the concrete strength, shear span-to-depth ratio, and stirrup type on the shear behavior of the corroded reinforced concrete beams. The results show that increasing the stirrup yielding strength is more effective in improving the shear strength of corroded reinforced concrete beams than that of concrete compressive strength. In terms of three types of stirrups, the shear strength of the beams with deformed HRB-335 is least sensitive to stirrup corrosion, followed by the beams with smooth HPB-235 and the beams with deformed HRB-400. The effect of the different stirrups on the shear strength depends on the corrosion degree of stirrup and shear span-to-depth ratio of the beam. The predicted results of shear strength of corroded reinforced concrete beams by a proposed analytical model are well consistent with the experimental results.


2014 ◽  
Vol 19 ◽  
pp. 112-120 ◽  
Author(s):  
Amir H. Gandomi ◽  
Danial Mohammadzadeh S. ◽  
Juan Luis Pérez-Ordóñez ◽  
Amir H. Alavi

Sign in / Sign up

Export Citation Format

Share Document