scholarly journals Modelling of Shear Strength for Reinforced Concrete Beams Provided with Side-Face Reinforcement in Dependence of Crack Inclination Angle

Shear behavior of reinforced concrete beams (RCbeams) is proved to be influenced by different parameters such as web reinforcement, beam size, shear span-to-depth ratio, concrete strength, and longitudinal reinforcement. In addition to these parameters, researches acknowledge the significant contribution of side-face reinforcement (SFR) in shear strength of RC-beams. This paper aims at proposing a new model for predicting shear strength of RC-beams that accounts for the contribution of SFR in shear strength along with the other above-mentioned parameters. An explicit formula is derived based on a mechanical conceptual model that considers the variation of the inclination angle of diagonal shear cracking. The derived formula is verified on the basis of numerical analysis results in addition to the available results from relevant experimental researches in literature. Reliability of the proposed formula is investigated compared to design provisions in different codes. Results demonstrates that the proposed formula is more capable of predicting shear strength of RC-beams provided with SFR rather than shear design codes. Consistency of the proposed formula in predicting shear strength implies that the mechanical concept, on which the proposed formula is derived, is in consistent with the actual mechanical behavior.

2014 ◽  
Vol 584-586 ◽  
pp. 1135-1140
Author(s):  
Leandro Mouta Trautwein ◽  
Luiz Carlos de Almeida ◽  
Ricardo Gaspar

This paper focuses on the assessment of the shear strength prediction established in the brazilian concrete code, NBR6118/2007[1], for reinforced concrete beams without web reinforcement. The values obtained by using the brazilian code equation are compared with a significant number of available experimental data and with those predicted by the expressions of other national and international codes, such as CEB-FIP MC90[2] and ACI-318/11[3]. The brazilian concrete code regarding shear capacity of reinforced concrete elements are explicitly assumed to be valid only for concrete strengths up to 50 MPa. It is shown that the code equation may be unconservative in a large number of cases. This discrepancy increases with increasing concrete strength, decreasing longitudinal reinforcement ratio and increasing beam depth.


2013 ◽  
Vol 671-674 ◽  
pp. 474-478 ◽  
Author(s):  
Kai Xiang ◽  
Guo Hui Wang ◽  
Bi Zhao

Shear strength and stiffness of fire-damaged reinforced concrete (RC) beams were researched. The nonlinear finite element method (FEM) was developed to simulate shear strength of fire-damaged RC beams. Considering mechanical properties deterioration of concrete and steel reinforcing bar, the parameters of fire-damaged RC beams, including fire exposure time, shear span to depth ratios, concrete strength, diameters of stirrups and spacing of stirrups, were analyzed. Based on numerical analysis, the change of shear strength and stiffness of fire-damaged RC beams were identified. The results showed that shear strength and stiffness of fire-damaged RC beams changed under different parameters. With increase of fire exposure time or increase of shear span to depth ratio or decrease of concrete strength, shear strength and stiffness of fire-damaged RC beams descended obviously. With decrease of diameters of stirrups or increase of spacing of stirrups, shear strength of fire-damaged RC beams descended gradually, but stiffness of fire-damaged RC beams had little change.


2019 ◽  
Vol 22 (14) ◽  
pp. 2998-3010 ◽  
Author(s):  
Zhao-Hui Lu ◽  
Hai Li ◽  
Wengui Li ◽  
Yan-Gang Zhao ◽  
Zhuo Tang ◽  
...  

Reinforcement corrosion exhibits an adverse effect on the shear strength of reinforced concrete structures. In order to investigate the effects of chloride-induced corrosion of reinforcing steel on the shear behavior and failure pattern of reinforced concrete beams, a total of 24 reinforced concrete beams with different concrete strength grades and arrangements of stirrups were fabricated, among which 22 beams were subjected to accelerated corrosion to achieve different degrees of reinforcement corrosion. The failure pattern, crack propagation, load–displacement response, and ultimate strength of these beams were investigated under a standard four-point loading test in this study. Extensive comparative analysis was conducted to investigate the effects of the concrete strength, shear span-to-depth ratio, and stirrup type on the shear behavior of the corroded reinforced concrete beams. The results show that increasing the stirrup yielding strength is more effective in improving the shear strength of corroded reinforced concrete beams than that of concrete compressive strength. In terms of three types of stirrups, the shear strength of the beams with deformed HRB-335 is least sensitive to stirrup corrosion, followed by the beams with smooth HPB-235 and the beams with deformed HRB-400. The effect of the different stirrups on the shear strength depends on the corrosion degree of stirrup and shear span-to-depth ratio of the beam. The predicted results of shear strength of corroded reinforced concrete beams by a proposed analytical model are well consistent with the experimental results.


2013 ◽  
Vol 40 (11) ◽  
pp. 1068-1081 ◽  
Author(s):  
Mitra Noghreh Khaja ◽  
Edward G. Sherwood

Beam tests are conducted to investigate the effect of the reinforcement ratio, ρ, and the shear span to depth ratio, a/d, on the shear strength of reinforced concrete beams and slabs without stirrups. The a/d ratio is shown to have a very significant effect on shear strength at both low values of a/d (where failure is governed by strut-and-tie mechanisms) and large values of a/d (where failure is governed by breakdown in beam action). Increases in ρ associated with increases in a/d such that the strain, or M/ρVd ratio, is kept constant will result in constant failure shear stresses. Shear design methods that do not account for a/d (e.g., ACI Committee 440) cannot predict the observed experimental behaviour, whereas the general method of the CSA A23.3 code can. Using the ACI 440 equation for Vc may reduce the economic competitiveness of fibre-reinforced polymer reinforcement versus steel reinforcement.


2006 ◽  
Vol 33 (8) ◽  
pp. 933-944 ◽  
Author(s):  
H El Chabib ◽  
M Nehdi ◽  
A Saïd

The exact effect that each of the basic shear design parameters exerts on the shear capacity of reinforced concrete (RC) beams without shear reinforcement (Vc) is still unclear. Previous research on this subject often yielded contradictory results, especially for reinforced high-strength concrete (HSC) beams. Furthermore, by simply adding Vc and the contribution of stirrups Vs to calculate the ultimate shear capacity Vu, current shear design practice assumes that the addition of stirrups does not alter the effect of shear design parameters on Vc. This paper investigates the validity of such a practice. Data on 656 reinforced concrete beams were used to train an artificial neural network model to predict the shear capacity of reinforced concrete beams and evaluate the performance of several existing shear strength calculation procedures. A parametric study revealed that the effect of shear reinforcement on the shear strength of RC beams decreases at a higher reinforcement ratio. It was also observed that the concrete contribution to shear resistance, Vc, in RC beams with shear reinforcement is noticeably larger than that in beams without shear reinforcement, and therefore most current shear design procedures provide conservative predictions for the shear strength of RC beams with shear reinforcement.Key words: analysis, artificial intelligence, beam depth, compressive strength, modeling, shear span, shear strength.


2012 ◽  
Vol 587 ◽  
pp. 36-41 ◽  
Author(s):  
S.F.A. Rafeeqi ◽  
S.U. Khan ◽  
N.S. Zafar ◽  
T. Ayub

In this paper, behaviour of nine (09) RC beams (including two control beams) after unbonding and exposing flexural reinforcement has been studied which were intentionally designed and detailed to observe flexural and shear failure. Beams have been divided into three groups based on failure mode and unbounded and exposed reinforcement. Beams have been tested under two-point loading up to failure. Experimental results are compared in terms of beam behaviour with respect to flexural capacity and failure mode which revealed that the exposed reinforcement does not altered flexural capacity significantly and unbondedness positively influences shear strength; however, serviceability performance of beams with unbonded and exposed reinforcement is less.


Sign in / Sign up

Export Citation Format

Share Document